UNPKG

n8n-nodes-piapi

Version:

Community n8n nodes for PiAPI - integrate generative AI capabilities (image, video, audio, 3D) into your workflows

359 lines 14.5 kB
"use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.FluxImageToImage = void 0; const GenericFunctions_1 = require("../shared/GenericFunctions"); const Constants_1 = require("../shared/Constants"); class FluxImageToImage { constructor() { this.description = { displayName: 'PiAPI Flux Image to Image', name: 'fluxImageToImage', icon: 'file:../piapi.svg', group: ['transform'], version: 1, description: 'Transform images using PiAPI Flux Image-to-Image', defaults: { name: 'Flux Image to Image', }, inputs: ["main"], outputs: ["main"], credentials: [ { name: 'piAPIApi', required: true, }, ], properties: [ { displayName: 'Model', name: 'model', type: 'options', options: [ { name: 'Flux 1 Dev', value: 'Qubico/flux1-dev', }, { name: 'Flux 1 Schnell', value: 'Qubico/flux1-schnell', }, { name: 'Flux 1 Dev Advanced', value: 'Qubico/flux1-dev-advanced', }, ], default: 'Qubico/flux1-dev', description: 'The model to use for image generation', }, { displayName: 'Image Source', name: 'imageSource', type: 'options', options: [ { name: 'URL', value: 'url', }, { name: 'Binary Data', value: 'binaryData', }, ], default: 'url', description: 'The source of the input image', }, { displayName: 'Image URL', name: 'imageUrl', type: 'string', default: '', required: true, displayOptions: { show: { imageSource: ['url'], }, }, description: 'URL of the image to transform', }, { displayName: 'Binary Property', name: 'binaryPropertyName', type: 'string', default: 'data', required: true, displayOptions: { show: { imageSource: ['binaryData'], }, }, description: 'Name of the binary property containing the image data', }, { displayName: 'Prompt', name: 'prompt', type: 'string', typeOptions: { rows: 4, }, default: '', required: true, description: 'Text prompt for image transformation', }, { displayName: 'Negative Prompt', name: 'negativePrompt', type: 'string', typeOptions: { rows: 2, }, default: '', description: 'Negative text prompt for image transformation', }, { displayName: 'Denoise Strength', name: 'denoiseStrength', type: 'number', default: 0.7, description: 'Determines how much to transform the image (0.0 to 1.0)', typeOptions: { minValue: 0.01, maxValue: 1, numberPrecision: 2, }, }, { displayName: 'Guidance Scale', name: 'guidanceScale', type: 'number', default: 3, description: 'Guidance scale for image generation. Higher values improve prompt adherence but may reduce image quality.', typeOptions: { minValue: 1.5, maxValue: 5, numberPrecision: 1, }, }, { displayName: 'Batch Size', name: 'batchSize', type: 'number', default: 1, description: 'Number of images to generate. Only works for Flux 1 Schnell model.', typeOptions: { minValue: 1, maxValue: 4, }, }, { displayName: 'Use LoRA', name: 'useLora', type: 'boolean', default: false, description: 'Whether to use LoRA model for generation (only available with Flux 1 Dev Advanced model)', displayOptions: { show: { model: ['Qubico/flux1-dev-advanced'], }, }, }, { displayName: 'LoRA Type', name: 'loraType', type: 'options', displayOptions: { show: { useLora: [true], }, }, options: Constants_1.LORA_OPTIONS, default: 'none', description: 'The LoRA model to use for image generation', }, { displayName: 'LoRA Strength', name: 'loraStrength', type: 'number', displayOptions: { show: { useLora: [true], }, }, default: 1, description: 'Strength of the LoRA effect (0.0 to 1.0)', typeOptions: { minValue: 0.1, maxValue: 1, numberPrecision: 2, }, }, { displayName: 'Use ControlNet', name: 'useControlNet', type: 'boolean', default: false, description: 'Whether to use ControlNet for generation (only available with Flux 1 Dev Advanced model)', displayOptions: { show: { model: ['Qubico/flux1-dev-advanced'], }, }, }, { displayName: 'ControlNet Type', name: 'controlNetType', type: 'options', displayOptions: { show: { useControlNet: [true], }, }, options: Constants_1.CONTROLNET_TYPES, default: 'none', description: 'The ControlNet type to use for image generation', }, { displayName: 'Control Strength', name: 'controlStrength', type: 'number', displayOptions: { show: { useControlNet: [true], }, }, default: 0.5, description: 'Strength of the ControlNet effect (0.0 to 1.0)', typeOptions: { minValue: 0.1, maxValue: 1, numberPrecision: 2, }, }, { displayName: 'Return Preprocessed Image', name: 'returnPreprocessed', type: 'boolean', displayOptions: { show: { useControlNet: [true], }, }, default: false, description: 'Whether to return the preprocessed control image', }, { displayName: 'Wait for Completion', name: 'waitForCompletion', type: 'boolean', default: false, description: 'Wait for task to complete and return results', }, ], }; } async execute() { var _a; const items = this.getInputData(); const returnData = []; for (let i = 0; i < items.length; i++) { const model = this.getNodeParameter('model', i); const prompt = this.getNodeParameter('prompt', i); const negativePrompt = this.getNodeParameter('negativePrompt', i, ''); const denoiseStrength = this.getNodeParameter('denoiseStrength', i, 0.7); const guidanceScale = this.getNodeParameter('guidanceScale', i, 3); const batchSize = this.getNodeParameter('batchSize', i, 1); const useLora = this.getNodeParameter('useLora', i, false); const loraType = useLora ? this.getNodeParameter('loraType', i, 'none') : 'none'; const loraStrength = useLora ? this.getNodeParameter('loraStrength', i, 1) : 1; const useControlNet = this.getNodeParameter('useControlNet', i, false); const controlNetType = useControlNet ? this.getNodeParameter('controlNetType', i, 'none') : 'none'; const controlStrength = useControlNet ? this.getNodeParameter('controlStrength', i, 0.5) : 0.5; const returnPreprocessed = useControlNet ? this.getNodeParameter('returnPreprocessed', i, false) : false; const waitForCompletion = this.getNodeParameter('waitForCompletion', i, true); const imageSource = this.getNodeParameter('imageSource', i); let imageUrl = ''; if (imageSource === 'url') { imageUrl = this.getNodeParameter('imageUrl', i); } else { const binaryPropertyName = this.getNodeParameter('binaryPropertyName', i); const binaryData = this.helpers.assertBinaryData(i, binaryPropertyName); if (binaryData.mimeType && !binaryData.mimeType.includes('image/')) { throw new Error('The provided binary data is not an image'); } if (binaryData.data) { const dataBuffer = Buffer.from(binaryData.data, 'base64'); imageUrl = `data:${binaryData.mimeType};base64,${dataBuffer.toString('base64')}`; } else if (binaryData.url) { imageUrl = binaryData.url; } else { throw new Error('No usable image data found in the provided binary property'); } } let taskType = 'img2img'; if (model === 'Qubico/flux1-dev-advanced') { if (useControlNet && controlNetType !== 'none') { taskType = 'controlnet-lora'; } else if (useLora && loraType !== 'none') { taskType = 'img2img-lora'; } } const body = { model, task_type: taskType, input: { prompt, negative_prompt: negativePrompt, image: imageUrl, denoise: denoiseStrength, guidance_scale: guidanceScale, batch_size: batchSize, }, }; if (useLora && loraType !== 'none') { body.input.lora_settings = [ { lora_type: loraType, lora_strength: loraStrength, }, ]; } if (useControlNet && controlNetType !== 'none') { body.input.control_net_settings = [ { control_type: controlNetType, control_image: imageUrl, control_strength: controlStrength, return_preprocessed_image: returnPreprocessed, }, ]; } try { const response = await GenericFunctions_1.piApiRequest.call(this, 'POST', '/api/v1/task', body); let taskResult = response; if (waitForCompletion && ((_a = response.data) === null || _a === void 0 ? void 0 : _a.task_id)) { taskResult = await GenericFunctions_1.waitForTaskCompletion.call(this, response.data.task_id); } returnData.push({ json: taskResult, }); } catch (error) { if (this.continueOnFail()) { returnData.push({ json: { error: error.message, }, }); continue; } throw error; } } return [returnData]; } } exports.FluxImageToImage = FluxImageToImage; //# sourceMappingURL=FluxImageToImage.node.js.map