UNPKG

my-animation-lib

Version:

A powerful animation library combining Three.js, GSAP, custom scroll triggers, and advanced effects with MathUtils integration

237 lines (191 loc) 6.61 kB
export class MathUtils { static clamp(value, min, max) { return Math.min(Math.max(value, min), max); } static lerp(start, end, factor) { return start + (end - start) * factor; } static map(value, inMin, inMax, outMin, outMax) { return ((value - inMin) * (outMax - outMin)) / (inMax - inMin) + outMin; } static random(min, max) { return Math.random() * (max - min) + min; } static randomInt(min, max) { return Math.floor(Math.random() * (max - min + 1)) + min; } static randomChoice(array) { return array[Math.floor(Math.random() * array.length)]; } static distance(x1, y1, x2, y2) { const dx = x2 - x1; const dy = y2 - y1; return Math.sqrt(dx * dx + dy * dy); } static distance3D(x1, y1, z1, x2, y2, z2) { const dx = x2 - x1; const dy = y2 - y1; const dz = z2 - z1; return Math.sqrt(dx * dx + dy * dy + dz * dz); } static angle(x1, y1, x2, y2) { return Math.atan2(y2 - y1, x2 - x1); } static degreesToRadians(degrees) { return degrees * (Math.PI / 180); } static radiansToDegrees(radians) { return radians * (180 / Math.PI); } static normalize(value, min, max) { return (value - min) / (max - min); } static smoothstep(edge0, edge1, x) { const t = MathUtils.clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0); return t * t * (3.0 - 2.0 * t); } static smootherstep(edge0, edge1, x) { const t = MathUtils.clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0); return t * t * t * (t * (t * 6 - 15) + 10); } static noise(x) { return Math.sin(x * 12.9898) * Math.cos(x * 78.233) * 43758.5453 % 1; } static perlinNoise(x, y) { const X = Math.floor(x) & 255; const Y = Math.floor(y) & 255; x -= Math.floor(x); y -= Math.floor(y); const u = this.fade(x); const v = this.fade(y); const A = this.p[X] + Y; const AA = this.p[A]; const AB = this.p[A + 1]; const B = this.p[X + 1] + Y; const BA = this.p[B]; const BB = this.p[B + 1]; return this.lerp( this.lerp(this.grad(this.p[AA], x, y), this.grad(this.p[BA], x - 1, y), u), this.lerp(this.grad(this.p[AB], x, y - 1), this.grad(this.p[BB], x - 1, y - 1), u), v ); } static fade(t) { return t * t * t * (t * (t * 6 - 15) + 10); } static lerp(a, b, t) { return a + t * (b - a); } static grad(hash, x, y) { const h = hash & 15; const u = h < 8 ? x : y; const v = h < 4 ? y : h === 12 || h === 14 ? x : 0; return ((h & 1) === 0 ? u : -u) + ((h & 2) === 0 ? v : -v); } static p = new Array(512); static permutation = [ 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 ]; static { for (let i = 0; i < 256; i++) { this.p[i] = this.permutation[i]; this.p[i + 256] = this.permutation[i]; } } static bezier(t, p0, p1, p2, p3) { const u = 1 - t; const tt = t * t; const uu = u * u; const uuu = uu * u; const ttt = tt * t; return uuu * p0 + 3 * uu * t * p1 + 3 * u * tt * p2 + ttt * p3; } static catmullRom(t, p0, p1, p2, p3) { const t2 = t * t; const t3 = t2 * t; // Catmull-Rom spline formula return 0.5 * ( (2 * p1) + (-p0 + p2) * t + (2 * p0 - 5 * p1 + 4 * p2 - p3) * t2 + (-p0 + 3 * p1 - 3 * p2 + p3) * t3 ); } static fibonacci(n) { if (n <= 1) return n; return this.fibonacci(n - 1) + this.fibonacci(n - 2); } static factorial(n) { if (n <= 1) return 1; return n * this.factorial(n - 1); } static isPrime(n) { if (n < 2) return false; if (n === 2) return true; if (n % 2 === 0) return false; for (let i = 3; i <= Math.sqrt(n); i += 2) { if (n % i === 0) return false; } return true; } static gcd(a, b) { while (b !== 0) { const temp = b; b = a % b; a = temp; } return a; } static lcm(a, b) { return (a * b) / this.gcd(a, b); } // Additional animation-friendly math utilities static bounce(t) { return Math.abs(Math.sin(t * Math.PI * 2)); } static elastic(t) { return Math.pow(2, 10 * (t - 1)) * Math.cos(t * Math.PI * 2); } static back(t) { const s = 1.70158; return t * t * ((s + 1) * t - s); } static circular(t) { return 1 - Math.sqrt(1 - t * t); } static exponential(t) { return t === 0 ? 0 : Math.pow(2, 10 * (t - 1)); } static sine(t) { return 1 - Math.cos(t * Math.PI / 2); } static cubic(t) { return t * t * t; } static quartic(t) { return t * t * t * t; } static quintic(t) { return t * t * t * t * t; } static bounceOut(t) { if (t < 1 / 2.75) { return 7.5625 * t * t; } else if (t < 2 / 2.75) { return 7.5625 * (t -= 1.5 / 2.75) * t + 0.75; } else if (t < 2.5 / 2.75) { return 7.5625 * (t -= 2.25 / 2.75) * t + 0.9375; } else { return 7.5625 * (t -= 2.625 / 2.75) * t + 0.984375; } } static elasticOut(t) { if (t === 0) return 0; if (t === 1) return 1; return Math.pow(2, -10 * t) * Math.sin((t - 0.075) * (2 * Math.PI) / 0.3) + 1; } static backOut(t) { const s = 1.70158; return --t * t * ((s + 1) * t + s) + 1; } }