my-animation-lib
Version:
A powerful animation library combining Three.js, GSAP, custom scroll triggers, and advanced effects with MathUtils integration
206 lines (165 loc) • 5.34 kB
JavaScript
export class Easing {
static linear(t) {
return t;
}
static easeInQuad(t) {
return t * t;
}
static easeOutQuad(t) {
return t * (2 - t);
}
static easeInOutQuad(t) {
return t < 0.5 ? 2 * t * t : -1 + (4 - 2 * t) * t;
}
static easeInCubic(t) {
return t * t * t;
}
static easeOutCubic(t) {
return (--t) * t * t + 1;
}
static easeInOutCubic(t) {
return t < 0.5 ? 4 * t * t * t : (t - 1) * (2 * t - 2) * (2 * t - 2) + 1;
}
static easeInQuart(t) {
return t * t * t * t;
}
static easeOutQuart(t) {
return 1 - (--t) * t * t * t;
}
static easeInOutQuart(t) {
return t < 0.5 ? 8 * t * t * t * t : 1 - 8 * (--t) * t * t * t;
}
static easeInSine(t) {
return 1 - Math.cos(t * Math.PI / 2);
}
static easeOutSine(t) {
return Math.sin(t * Math.PI / 2);
}
static easeInOutSine(t) {
return -(Math.cos(Math.PI * t) - 1) / 2;
}
static easeInExpo(t) {
return t === 0 ? 0 : Math.pow(2, 10 * t - 10);
}
static easeOutExpo(t) {
return t === 1 ? 1 : 1 - Math.pow(2, -10 * t);
}
static easeInOutExpo(t) {
if (t === 0) return 0;
if (t === 1) return 1;
if (t < 0.5) return Math.pow(2, 20 * t - 10) / 2;
return (2 - Math.pow(2, -20 * t + 10)) / 2;
}
static easeInCirc(t) {
return 1 - Math.sqrt(1 - t * t);
}
static easeOutCirc(t) {
return Math.sqrt(1 - (t - 1) * (t - 1));
}
static easeInOutCirc(t) {
if (t < 0.5) return (1 - Math.sqrt(1 - (2 * t) * (2 * t))) / 2;
return (Math.sqrt(1 - Math.pow(-2 * t + 2, 2)) + 1) / 2;
}
static easeInBack(t) {
const c1 = 1.70158;
const c3 = c1 + 1;
return c3 * t * t * t - c1 * t * t;
}
static easeOutBack(t) {
const c1 = 1.70158;
const c3 = c1 + 1;
return 1 + c3 * Math.pow(t - 1, 3) + c1 * Math.pow(t - 1, 2);
}
static easeInOutBack(t) {
const c1 = 1.70158;
const c2 = c1 * 1.525;
if (t < 0.5) return (Math.pow(2 * t, 2) * ((c2 + 1) * 2 * t - c2)) / 2;
return (Math.pow(2 * t - 2, 2) * ((c2 + 1) * (t * 2 - 2) + c2) + 2) / 2;
}
static easeInElastic(t) {
if (t === 0) return 0;
if (t === 1) return 1;
return -Math.pow(2, 10 * t - 10) * Math.sin((t * 10 - 10.75) * ((2 * Math.PI) / 3));
}
static easeOutElastic(t) {
if (t === 0) return 0;
if (t === 1) return 1;
return Math.pow(2, -10 * t) * Math.sin((t * 10 - 0.75) * ((2 * Math.PI) / 3)) + 1;
}
static easeInOutElastic(t) {
if (t === 0) return 0;
if (t === 1) return 1;
if (t < 0.5) return -(Math.pow(2, 20 * t - 10) * Math.sin((20 * t - 11.125) * ((2 * Math.PI) / 4.5))) / 2;
return (Math.pow(2, -20 * t + 10) * Math.sin((20 * t - 11.125) * ((2 * Math.PI) / 4.5))) / 2 + 1;
}
static easeInBounce(t) {
return 1 - Easing.easeOutBounce(1 - t);
}
static easeOutBounce(t) {
if (t < 1 / 2.75) {
return 7.5625 * t * t;
} else if (t < 2 / 2.75) {
return 7.5625 * (t -= 1.5 / 2.75) * t + 0.75;
} else if (t < 2.5 / 2.75) {
return 7.5625 * (t -= 2.25 / 2.75) * t + 0.9375;
} else {
return 7.5625 * (t -= 2.625 / 2.75) * t + 0.984375;
}
}
static easeInOutBounce(t) {
if (t < 0.5) return Easing.easeInBounce(2 * t) / 2;
return Easing.easeOutBounce(2 * t - 1) / 2 + 0.5;
}
// Custom easing functions
static custom(points) {
return (t) => {
if (t <= 0) return points[0];
if (t >= 1) return points[points.length - 1];
const index = t * (points.length - 1);
const lowerIndex = Math.floor(index);
const upperIndex = Math.ceil(index);
const weight = index - lowerIndex;
if (lowerIndex === upperIndex) return points[lowerIndex];
return points[lowerIndex] * (1 - weight) + points[upperIndex] * weight;
};
}
// Bezier curve easing
static bezier(p1x, p1y, p2x, p2y) {
return (t) => {
if (t === 0 || t === 1) return t;
const cx = 3 * p1x;
const bx = 3 * (p2x - p1x) - cx;
const ax = 1 - cx - bx;
const cy = 3 * p1y;
const by = 3 * (p2y - p1y) - cy;
const ay = 1 - cy - by;
const sampleCurveX = (t) => ((ax * t + bx) * t + cx) * t;
const sampleCurveY = (t) => ((ay * t + by) * t + cy) * t;
const sampleCurveDerivativeX = (t) => (3 * ax * t + 2 * bx) * t + cx;
const solveCurveX = (x, epsilon) => {
let t0, t1, t2, x2, d2, i;
for (t2 = x, i = 0; i < 8; i++) {
x2 = sampleCurveX(t2) - x;
if (Math.abs(x2) < epsilon) return t2;
d2 = sampleCurveDerivativeX(t2);
if (Math.abs(d2) < 1e-6) break;
t2 = t2 - x2 / d2;
}
t0 = 0;
t1 = 1;
t2 = x;
if (t2 < t0) return t0;
if (t2 > t1) return t1;
while (t0 < t1) {
x2 = sampleCurveX(t2);
if (Math.abs(x2 - x) < epsilon) return t2;
if (x > x2) t0 = t2;
else t1 = t2;
t2 = (t1 - t0) * 0.5 + t0;
}
return t2;
};
return sampleCurveY(solveCurveX(x, 1e-6));
};
}
}