mpzjs
Version:
Arbitrary-precision integer arithmetic using libgmp
350 lines (230 loc) • 8.88 kB
Markdown
mpzjs 0.7.1
===========
Arbitrary precision integral arithmetic for node.js.
Based on [node-bigint](https://github.com/substack/node-bigint)

This library wraps around [libgmp](https://gmplib.org)'s
[integer functions](https://gmplib.org/manual/Integer-Functions.html#Integer-Functions)
to perform infinite-precision arithmetic.
It can be used with worker threads.
mpzjs is several times faster than BigInt.
Install
=======
You'll need the libgmp to work this package. Under Debian-based systems,
sudo apt-get install libgmp-dev
On a Mac with [Homebrew](https://github.com/mxcl/homebrew/),
brew install gmp
And then install with [npm](http://npmjs.org):
npm install mpzjs
Example
=======
simple.js
---------
const MPZ = require('mpzjs');
const n = MPZ('782910138827292261791972728324982');
MPZ.sub(n, n, '182373273283402171237474774728373');
MPZ.div(n, n, 8);
console.log(n);
const b = MPZ('782910138827292261791972728324982')
.sub('182373273283402171237474774728373')
.div(8);
console.log(b);
***
$ node simple.js
<MPZ 75067108192986261319312244199576>
<MPZ 75067108192986261319312244199576>
perfect.js
----------
Generate the perfect numbers:
// If 2**n-1 is prime, then (2**n-1) * 2**(n-1) is perfect.
const MPZ = require('mpzjs');
for (let n = 0; n < 100; n++) {
const p = MPZ(2).pow(n).sub(1);
if (p.probPrime(50)) {
const perfect = p.mul(MPZ(2).pow(n - 1));
console.log(perfect.toString());
}
}
***
6
28
496
8128
33550336
8589869056
137438691328
2305843008139952128
2658455991569831744654692615953842176
191561942608236107294793378084303638130997321548169216
Limitations
===========
It doesn't work in Windows now.
API
===
There are two sets of methods
Instance methods that create new `MPZ`.
```
const num = value.method(operand);
```
for example
```
const value = MPZ(7);
const result = value.mul(6);
```
And static methods that save the result to the specified variable.
```
MPZ.method(result, value, operand);
```
for example
```
const result = MPZ();
MPZ.mul(result, 7, 6);
```
Static methods are noticeably faster.
MPZ(num, base=10)
-----------------
Create a new `MPZ` from `num` and a base. `num` can be a string, number, BigInt, empty or another `MPZ`.
If you pass in a string you can set the base that string is encoded in.
value.toString(base=10)
-----------------------
Print out the `MPZ` instance in the requested base as a string.
value.toNumber()
----------------
Turn a `MPZ` into a `Number`. If the `MPZ` is too big you'll lose precision or you'll get ±`Infinity`.
value.toBigInt(), value.toJSON()
--------------------------------
Convert `MPZ` to the specified format
value.valueOf()
---------------
Convert `MPZ` to BigInt
MPZ.fromBuffer(buf, opts)
-------------------------
Create a new `MPZ` from a `Buffer`.
The default options are:
```
{
order : 'forward', // low-to-high indexed word ordering
endian : 'big',
size : 1, // number of bytes in each word
}
```
Note that endian doesn't matter when size = 1.
value.toBuffer(opts)
--------------------
Return a new `Buffer` with the data from the `MPZ`.
The default options are:
```
{
order : 'forward', // low-to-high indexed word ordering
endian : 'big',
size : 1, // number of bytes in each word
}
```
Note that endian doesn't matter when size = 1.
value.set(num), MPZ.set(value, num)
-----------------------------------
Assigns `num` to `value`.
result = value.add(num), MPZ.add(result, value, num)
----------------------------------------------------
Set `result` to `value` plus `num`.
result = value.sub(num), MPZ.sub(result, value, num)
----------------------------------------------------
Set `result` to `value` minus `num`.
result = value.mul(num), MPZ.mul(result, value, num)
----------------------------------------------------
Set `result` to `value` multiplied by `num`.
result = value.div(num), MPZ.div(result, value, num)
----------------------------------------------------
Set `result` to `value` integrally divided by `num`.
result = value.mod(num), MPZ.mod(result, value, num)
----------------------------------------------------
Set `result` to `value` modulo `num`.
MPZ.addMul(result, value1, value2)
----------------------------------
Set `result` to `result` plus `value1` times `value2`.
MPZ.subMul(result, value1, value2)
----------------------------------
Set `result` to `result` minus `value1` times `value2`.
result = value.and(num), MPZ.and(result, value, num)
----------------------------------------------------
Set `result` to `value` bitwise AND (&)-ed with `num`.
result = value.or(num), MPZ.or(result, value, num)
--------------------------------------------------
Set `result` to `value` bitwise inclusive-OR (|)-ed with `num`.
result = value.xor(num), MPZ.xor(result, value, num)
----------------------------------------------------
Set `result` to `value` bitwise exclusive-OR (^)-ed with `num`.
result = value.not(), MPZ.not(result, value)
--------------------------------------------
Set `result` to `value` bitwise NOT (~)ed.
result = value.shiftLeft(num), MPZ.shiftLeft(result, value, num)
----------------------------------------------------------------
Set `result` to `value` multiplied by `2^num`. Equivalent of the `<<` operator.
result = value.shiftRight(num), MPZ.shiftRight(result, value, num)
------------------------------------------------------------------
Set `result` to `value` integrally divided by `2^num`. Equivalent of the `>>` operator.
result = value.abs(), MPZ.abs(result, value)
--------------------------------------------
Set `result` to the absolute value of `value`.
result = value.neg(), MPZ.neg(result, value)
--------------------------------------------
Set `result` to the negative of `value`.
result = value.sqrt(), MPZ.sqrt(result, value)
----------------------------------------------
Set `result` to square root of `value`. This truncates.
result = value.root(nth), MPZ.root(result, value, nth)
------------------------------------------------------
Set `result` to `nth` root of `value`. This truncates.
result = value.pow(exp), MPZ.pow(result, value, exp)
----------------------------------------------------
Set `result` to `value` raised to the `exp` power.
result = value.powm(exp, mod), MPZ.powm(result, value, exp, mod)
----------------------------------------------------------------
Set `result` to `value` raised to the `exp` power modulo `mod`.
value.cmp(num)
--------------
Compare the instance value to `num`. Return a positive integer if `> num`,
a negative integer if `< num`, and 0 if `=== num`.
value.gt(num)
-------------
Return a boolean: whether the instance value is greater than num (`> num`).
value.ge(num)
-------------
Return a boolean: whether the instance value is greater than or equal to num (`>= num`).
value.eq(num)
-------------
Return a boolean: whether the instance value is equal to num (`== num`).
value.lt(num)
-------------
Return a boolean: whether the instance value is less than num (`< num`).
value.le(num)
-------------
Return a boolean: whether the instance value is less than or equal to num (`<= num`).
result = value.rand(upperBound), MPZ.rand(result, lowerBound, upperBound), MPZ.rand(result, upperBound)
-------------------------------------------------------------------------------------------------------
If `upperBound` is supplied, set `result`to a random `MPZ` between the `value` (`lowerBound`)
and `upperBound - 1`, inclusive.
Otherwise, set `result`to a random `MPZ` between 0 and the `value` - 1, inclusive.
value.probPrime()
-----------------
Return whether the `value` is:
* certainly prime (true)
* probably prime ('maybe')
* certainly composite (false)
using [mpz_probab_prime](https://gmplib.org/manual/Number-Theoretic-Functions.html).
result = value.nextPrime(), MPZ.nextPrime(result, value)
--------------------------------------------------------
Set `result` to the next prime greater than `value` using
[mpz_nextprime](https://gmplib.org/manual/Number-Theoretic-Functions.html).
result = value.invert(mod), MPZ.invert(result, value, mod)
----------------------------------------------------------
Compute the multiplicative inverse modulo `mod`.
result = value.gcd(num), MPZ.gcd(result, value, num)
----------------------------------------------------
Set `result` to the greatest common divisor of the `value` with `num`.
value.bitLength()
-----------------
Return the number of bits used to represent the current `MPZ` as a javascript Number.
License
=======
MIT or LGPL-3 license.