UNPKG

moving-average-arima

Version:

ARIMA, SARIMA, SARIMAX and AutoARIMA models for time series analysis and forecasting

218 lines (204 loc) 4.24 kB
function uintify(arr: Array<any>) { return new Uint8Array(Float64Array.from(arr).buffer); } function flat(arr: Array<any>) { return [].concat.apply([], arr); } function transpose(arr: Array<any>) { return arr[0].map((_: any, i: number) => arr.map((x) => x[i])); } function prepare(arr: Array<any>) { const farr = flat(arr); for (let i = 0; i < farr.length - 2; i++) { if (isNaN(farr[i + 1])) { farr[i + 1] = farr[i]; } } return farr; } const defaults = { method: 0, optimizer: 6, s: 0, verbose: true, transpose: false, auto: false, approximation: 1, search: 1, }; const params = { p: 1, d: 0, q: 1, P: 0, D: 0, Q: 0, }; const paramsAuto = { p: 5, d: 2, q: 5, P: 2, D: 1, Q: 2, }; export default function (m: any) { const _fit_sarimax = m.cwrap("fit_sarimax", "number", [ "array", "array", "number", "number", "number", "number", "number", "number", "number", "number", "number", "number", "number", "boolean", ]); const _predict_sarimax = m.cwrap("predict_sarimax", "number", [ "number", "array", "array", "array", "number", ]); const _fit_autoarima = m.cwrap("fit_autoarima", "number", [ "array", "array", "number", "number", "number", "number", "number", "number", "number", "number", "number", "number", "number", "number", "number", "boolean", ]); const _predict_autoarima = m.cwrap("predict_autoarima", "number", [ "number", "array", "array", "array", "number", ]); function getResults(addr, l) { const res = [[], []]; for (let i = 0; i < l * 2; i++) { res[i < l ? 0 : 1].push( m.HEAPF64[addr / Float64Array.BYTES_PER_ELEMENT + i] ); } return res; } function ARIMA() { // Preserve the old functional API: ARIMA(ts, len, opts) if (!(this instanceof ARIMA)) { console.warn( "Calling ARIMA as a function will be deprecated in the future" ); return new ARIMA(arguments[2]).train(arguments[0]).predict(arguments[1]); } // A new, class API has opts as the only argument here: new ARIMA (opts) const opts = arguments[0]; const o = Object.assign( {}, defaults, opts.auto ? paramsAuto : params, opts ); if ( Math.min(o.method, o.optimizer, o.p, o.d, o.q, o.P, o.D, o.Q, o.s) < 0 ) { throw new Error("Model parameter can't be negative"); } if (o.P + o.D + o.Q === 0) { o.s = 0; } else if (o.s === 0) { o.P = o.D = o.Q = 0; } this.options = o; } ARIMA.prototype.train = function (ts, exog = []) { const o = this.options; if (o.transpose && Array.isArray(exog[0])) { exog = transpose(exog); } this.ts = uintify(prepare(ts)); this.exog = uintify(prepare(exog)); this.lin = ts.length; this.nexog = exog.length > 0 ? (Array.isArray(exog[0]) ? exog.length : 1) : 0; this.model = o.auto ? _fit_autoarima( this.ts, this.exog, o.p, o.d, o.q, o.P, o.D, o.Q, o.s, this.nexog, this.lin, o.method, o.optimizer, o.approximation, o.search, o.verbose ) : _fit_sarimax( this.ts, this.exog, o.p, o.d, o.q, o.P, o.D, o.Q, o.s, this.nexog, this.lin, o.method, o.optimizer, o.verbose ); return this; }; ARIMA.prototype.fit = function (...a) { return this.train(...a); }; ARIMA.prototype.predict = function (l, exog = []) { const o = this.options; if (o.transpose && Array.isArray(exog[0])) { exog = transpose(exog); } const addr = o.auto ? _predict_autoarima( this.model, this.ts, this.exog, // old uintify(prepare(exog)), // new l ) : _predict_sarimax( this.model, this.ts, this.exog, // old uintify(prepare(exog)), // new l ); return getResults(addr, l); }; return ARIMA; }