UNPKG

mongodb-rag

Version:

RAG (Retrieval Augmented Generation) library for MongoDB Vector Search

39 lines (31 loc) 1.22 kB
// src/cli/progressBar.js import chalk from 'chalk'; const funFacts = [ "Did you know? Vector search helps find similar items even if they use different words!", "MongoDB Atlas Vector Search uses cosine similarity by default 📐", "RAG helps combine the power of vector search with your own data 🔋", "Vector embeddings can capture semantic meaning beyond keywords 🎯", "MongoDB can handle billions of vectors efficiently! 🚀", "Vector search is like giving your database a human-like understanding 🧠" ]; class FunProgressBar { constructor() { this.width = 40; this.currentFact = 0; } update(progress) { const filled = Math.round(this.width * progress); const empty = this.width - filled; const filledBar = '█'.repeat(filled); const emptyBar = '░'.repeat(empty); process.stdout.clearLine(); process.stdout.cursorTo(0); const percentage = Math.round(progress * 100); process.stdout.write( chalk.blue(`[${filledBar}${emptyBar}] ${percentage}%\n`) + chalk.yellow(`Fun Fact: ${funFacts[this.currentFact]}\n`) ); this.currentFact = (this.currentFact + 1) % funFacts.length; } } export default FunProgressBar;