UNPKG

mongodb-rag

Version:

RAG (Retrieval Augmented Generation) library for MongoDB Vector Search

192 lines (151 loc) โ€ข 6.11 kB
--- ![MongoDB RAG Logo](static/mongodb-rag-logo.png) # MongoDB-RAG ![NPM Version](https://img.shields.io/npm/v/mongodb-rag?color=blue&label=npm) ![License](https://img.shields.io/github/license/mongodb-developer/mongodb-rag) ![Issues](https://img.shields.io/github/issues/mongodb-developer/mongodb-rag) ![Pull Requests](https://img.shields.io/github/issues-pr/mongodb-developer/mongodb-rag) ![Downloads](https://img.shields.io/npm/dt/mongodb-rag) ![MongoDB-RAG](https://img.shields.io/badge/MongoDB--RAG-Enabled-brightgreen?style=flat&logo=https://raw.githubusercontent.com/mongodb-developer/mongodb-rag/main/static/logo-square.png) ## Overview MongoDB-RAG (Retrieval Augmented Generation) is an NPM module that simplifies vector search using MongoDB Atlas. This library enables developers to efficiently perform similarity search, caching, batch processing, and indexing for fast and accurate retrieval of relevant data. ## ๐Ÿš€ Features - **Vector Search**: Efficiently retrieves similar documents using MongoDB's Atlas Vector Search. - **Dynamic Database & Collection Selection**: Supports flexible selection of multiple databases and collections. - **Batch Processing**: Handles bulk processing of documents with retry mechanisms. - **Index Management**: Ensures necessary indexes are available and optimized. - **Caching Mechanism**: Provides in-memory caching for frequently accessed data. - **Advanced Chunking**: Supports **sliding window**, **semantic**, and **recursive** chunking strategies. - **CLI for Scaffolding RAG Apps** --- ## **๐Ÿš€ Getting Started** ### **1๏ธโƒฃ Install the Package** ```sh npm install mongodb-rag dotenv ``` ### **2๏ธโƒฃ Set Up MongoDB Atlas** 1. **Initialize Your App** using the CLI: ```sh npx mongodb-rag init ``` This will guide you through setting up your MongoDB connection and save the configuration to `.mongodb-rag.json`. Make sure to add `.mongodb-rag.json` to your `.gitignore` file to keep your credentials secure. ```bash % npx mongodb-rag init โœ” Enter your MongoDB connection string: ยท mongodb+srv://<username>:<password>@cluster0.mongodb.net/ โœ” Enter the database name: ยท mongodb-rag โœ” Enter the collection name: ยท documents โœ” Select an embedding provider: ยท openai โœ” Enter your API key (skip if using Ollama): ยท your-embedding-api-key โœ” Enter the model name: ยท text-embedding-3-small โœ” Enter the embedding dimensions: ยท 1536 โœ… Configuration saved to .mongodb-rag.json ๐Ÿ” Next steps: 1. Run `npx mongodb-rag test-connection` to verify your setup 2. Run `npx mongodb-rag create-index` to create your vector search index ``` 2. **Create a MongoDB Atlas Cluster** ([MongoDB Atlas](https://www.mongodb.com/atlas)) 3. **Enable Vector Search** under Indexes: ```json { "definition": { "fields": [ { "path": "embedding", "type": "vector", "numDimensions": 1536, "similarity": "cosine" } ] } } ``` or, use the CLI to create the index: ```sh npx mongodb-rag create-index ``` 4. **Create a `.env` File** using: ```sh npx mongodb-rag create-env ``` This command reads the `.mongodb-rag.json` file and generates a `.env` file with the necessary environment variables. ### **3๏ธโƒฃ Quick Start with CLI** You can generate a fully working RAG-enabled app with **MongoDB Atlas Vector Search** using: ```sh npx mongodb-rag create-rag-app my-rag-app ``` This will: - Scaffold a new **CRUD RAG app** with Express and MongoDB Atlas. - Set up **environment variables** for **embedding providers**. - Create API routes for **ingestion, search, and deletion**. Then, navigate into your project and run: ```sh cd my-rag-app npm install npm run dev ``` ### **4๏ธโƒฃ Initialize MongoRAG** ```javascript import { MongoRAG } from 'mongodb-rag'; import dotenv from 'dotenv'; dotenv.config(); const rag = new MongoRAG({ mongoUrl: process.env.MONGODB_URI, database: 'my_rag_db', // Default database collection: 'documents', // Default collection embedding: { provider: process.env.EMBEDDING_PROVIDER, apiKey: process.env.EMBEDDING_API_KEY, model: process.env.EMBEDDING_MODEL, dimensions: 1536 } }); await rag.connect(); ``` ### **5๏ธโƒฃ Ingest Documents** ```javascript const documents = [ { id: 'doc1', content: 'MongoDB is a NoSQL database.', metadata: { source: 'docs' } }, { id: 'doc2', content: 'Vector search is useful for semantic search.', metadata: { source: 'ai' } } ]; await rag.ingestBatch(documents, { database: 'dynamic_db', collection: 'dynamic_docs' }); console.log('Documents ingested.'); ``` ### **6๏ธโƒฃ Perform a Vector Search** ```javascript const query = 'How does vector search work?'; const results = await rag.search(query, { database: 'dynamic_db', collection: 'dynamic_docs', maxResults: 3 }); console.log('Search Results:', results); ``` ### **7๏ธโƒฃ Close Connection** ```javascript await rag.close(); ``` --- ## **โšก Additional Features** ### **๐ŸŒ Multi-Database & Collection Support** Store embeddings in multiple **databases and collections** dynamically. ```javascript await rag.ingestBatch(docs, { database: 'finance_db', collection: 'reports' }); ``` ### **๐Ÿ”Ž Hybrid Search (Vector + Metadata Filtering)** ```javascript const results = await rag.search('AI topics', { database: 'my_rag_db', collection: 'documents', maxResults: 5, filter: { 'metadata.source': 'ai' } }); ``` --- ## **๐Ÿค Contributing** Contributions are welcome! Please fork the repository and submit a pull request. --- ## **๐Ÿ“œ License** This project is licensed under the MIT License. ## **๐Ÿ’ก Examples** - For more examples, check our [examples directory](https://github.com/mongodb-developer/mongodb-rag/tree/main/examples). ## ๐Ÿ”— Links - CLI Reference - [Documentation](https://mongodb-developer.github.io/mongodb-rag/) - [GitHub Repository](https://github.com/mongodb-developer/mongodb-rag) - [Bug Reports](https://github.com/mongodb-developer/mongodb-rag/issues) - [MongoDB Atlas](https://www.mongodb.com/cloud/atlas)