UNPKG

mongodb-memory-bank-mcp-v2

Version:

MongoDB-powered Memory Bank MCP server with hybrid search capabilities for AI assistants

196 lines (151 loc) 5.53 kB
# Memory Bank MCP Server [![npm version](https://badge.fury.io/js/mongodb-memory-bank-mcp.svg)](https://www.npmjs.com/package/mongodb-memory-bank-mcp) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) A MongoDB-powered Memory Bank MCP (Model Context Protocol) server that creates an intelligent, project-aware memory system for AI assistants. Built with MongoDB Atlas Vector Search's hybrid search capabilities. ## What It Does This MCP server provides AI assistants with persistent memory across sessions by: - Storing structured project documentation in MongoDB - Using vector embeddings for semantic search - Combining vector and text search for powerful hybrid queries - Maintaining strict project isolation - Providing tools for reading, updating, and searching memories ## Features - 🧠 **Intelligent Memory System** - Structured documentation that evolves with your project - 🔍 **Hybrid Search** - Combines MongoDB's vector and text search capabilities - 🏗️ **Project Isolation** - Each project maintains its own memory space - 🚀 **High-Performance** - Leverages MongoDB indexes and Voyage AI embeddings - 🔧 **MCP Integration** - Works seamlessly with Claude and other MCP-compatible AI assistants ## Installation ### Prerequisites - Node.js 18+ - MongoDB Atlas cluster with Vector Search enabled - Voyage AI API key ### Quick Start (Recommended) Run directly with npx (no installation needed): ```bash # Set environment variables export MONGODB_URI="your-mongodb-uri" export VOYAGE_API_KEY="your-voyage-key" # Run the server npx mongodb-memory-bank-mcp ``` Or configure in Claude's MCP settings: ```json { "mcpServers": { "memory-bank": { "command": "npx", "args": ["mongodb-memory-bank-mcp"], "env": { "MONGODB_URI": "your-mongodb-uri", "VOYAGE_API_KEY": "your-voyage-key" } } } } ``` ### Local Development 1. Clone the repository: ```bash git clone https://github.com/romiluz13/mongodb-memory-bank-mcp.git cd mongodb-memory-bank-mcp ``` 2. Install dependencies: ```bash pnpm install ``` 3. Configure environment: ```bash cp .env.example .env.local # Edit .env.local with your MongoDB URI and Voyage AI key ``` 4. Build the project: ```bash pnpm build ``` 5. Create MongoDB indexes: ```bash pnpm db:indexes ``` ## Running Locally ### Development Mode ```bash pnpm dev ``` ### Testing with MCP Inspector ```bash pnpm mcp:inspect ``` ### Running Tests ```bash pnpm test ``` ## Usage with Claude Add to your Claude MCP settings: ```json { "mcpServers": { "mongodb-memory-bank-mcp": { "command": "npx", "args": ["mongodb-memory-bank-mcp-v2"], "env": { "MONGODB_URI": "your-mongodb-uri", "VOYAGE_API_KEY": "your-voyage-key" } } } } ``` ## Version 1.3.0 - Context Engineering REVOLUTION! 🚀 ### Feature Blueprints - Your New SUPERPOWER! - **🎯 Validation Gates**: Ensure production-ready code EVERY time - **📊 Confidence Scoring**: Know exactly when to ship (0-10 scale) - **🔍 Pattern Discovery**: Find similar features with MongoDB hybrid search - **✅ Multi-Level Validation**: TypeScript → Tests → Integration → Production - **🧠 Context Engineering**: 100x better than prompt engineering! ### Quick Start with Feature Blueprints ```bash # Create a new feature blueprint memory_bank/feature --action create --name "user-authentication" # Validate your implementation memory_bank/feature --action validate --name "user-authentication" # Find similar patterns memory_bank/feature --action search --name "auth" ``` ## Version 1.2.0 - AI-Optimized Memory Bank! ### v1.2.0 Features - The Final 5%! - **🎯 Smart Search Previews**: Shows actual matching context, not just first 200 chars - **🧠 AI-Focused Templates**: Rich prompts helping AI understand project context better - **🔗 Auto-Reference Detection**: Automatically finds relationships between memory files - **📊 Content Stats**: Shows file size and version in search results - **⏰ Access Tracking**: Tracks last accessed time for freshness - **💡 Better Memory Structure**: Each file now has AI-specific guidance sections ### v1.1.1 Fixes - **Fixed Hybrid Search Scoring**: Proper handling of $rankFusion RRF scores - **Score Safety**: All score values now safely handle undefined cases - **100% Search Coverage**: Vector, text, and hybrid all working perfectly ### v1.1.0 Features - **MongoDB $rankFusion**: Official MongoDB 8.1 operator for hybrid search - **Reciprocal Rank Fusion**: Intelligent result ranking algorithm - **Weighted Scoring**: Configurable weights (default: 70% vector, 30% text) - **Atlas Search Integration**: Full-text search with Atlas Search indexes ### v1.0.1 Fixes - Fixed vector search index naming mismatch - Fixed hybrid search filter configuration - Improved search reliability ## Memory Structure The memory bank uses six core files: - `projectbrief.md` - Foundation document - `productContext.md` - Why the project exists - `activeContext.md` - Current work focus - `systemPatterns.md` - Architecture decisions - `techContext.md` - Technology stack - `progress.md` - What works and what's next ## Contributing See [CONTRIBUTING.md](CONTRIBUTING.md) for development guidelines. ## Documentation - [CLAUDE.md](CLAUDE.md) - Detailed project context and rules - [WORKFLOWS/](WORKFLOWS/) - Reusable automation recipes - [ONBOARDING.md](ONBOARDING.md) - Getting started guide ## License MIT