UNPKG

molstar

Version:

A comprehensive macromolecular library.

303 lines (302 loc) 15.1 kB
"use strict"; /** * Copyright (c) 2019-2024 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author Alexander Rose <alexander.rose@weirdbyte.de> * @author Paul Pillot <paul.pillot@tandemai.com> */ Object.defineProperty(exports, "__esModule", { value: true }); exports.InteractionsInterUnitParams = void 0; exports.InteractionsInterUnitVisual = InteractionsInterUnitVisual; const param_definition_1 = require("../../../mol-util/param-definition"); const structure_1 = require("../../../mol-model/structure"); const mesh_1 = require("../../../mol-geo/geometry/mesh/mesh"); const linear_algebra_1 = require("../../../mol-math/linear-algebra"); const link_1 = require("../../../mol-repr/structure/visual/util/link"); const complex_visual_1 = require("../../../mol-repr/structure/complex-visual"); const loci_1 = require("../../../mol-model/loci"); const int_1 = require("../../../mol-data/int"); const interactions_1 = require("../interactions/interactions"); const interactions_2 = require("../interactions"); const location_iterator_1 = require("../../../mol-geo/util/location-iterator"); const common_1 = require("../interactions/common"); const structure_2 = require("../../../mol-model/structure/structure"); const geometry_1 = require("../../../mol-math/geometry"); const type_helpers_1 = require("../../../mol-util/type-helpers"); const shared_1 = require("./shared"); const util_1 = require("../chemistry/util"); const common_2 = require("../../../mol-repr/structure/visual/util/common"); function createInterUnitInteractionCylinderMesh(ctx, structure, theme, props, mesh) { if (!structure.hasAtomic) return mesh_1.Mesh.createEmpty(mesh); const l = structure_1.StructureElement.Location.create(structure); const interactions = interactions_2.InteractionsProvider.get(structure).value; const { contacts, unitsFeatures } = interactions; const { edgeCount, edges } = contacts; const { sizeFactor, ignoreHydrogens, ignoreHydrogensVariant, parentDisplay } = props; if (!edgeCount) return mesh_1.Mesh.createEmpty(mesh); const { child } = structure; const p = (0, linear_algebra_1.Vec3)(); const pA = (0, linear_algebra_1.Vec3)(); const pB = (0, linear_algebra_1.Vec3)(); const builderProps = { linkCount: edgeCount, position: (posA, posB, edgeIndex) => { const { unitA, indexA, unitB, indexB, props: { type: t } } = edges[edgeIndex]; const fA = unitsFeatures.get(unitA); const fB = unitsFeatures.get(unitB); const uA = structure.unitMap.get(unitA); const uB = structure.unitMap.get(unitB); if ((!ignoreHydrogens || ignoreHydrogensVariant !== 'all') && (t === common_1.InteractionType.HydrogenBond || (t === common_1.InteractionType.WeakHydrogenBond && ignoreHydrogensVariant !== 'non-polar'))) { const idxA = fA.members[fA.offsets[indexA]]; const idxB = fB.members[fB.offsets[indexB]]; uA.conformation.position(uA.elements[idxA], pA); uB.conformation.position(uB.elements[idxB], pB); let minDistA = linear_algebra_1.Vec3.distance(pA, pB); let minDistB = minDistA; linear_algebra_1.Vec3.copy(posA, pA); linear_algebra_1.Vec3.copy(posB, pB); const donorType = t === common_1.InteractionType.HydrogenBond ? common_1.FeatureType.HydrogenDonor : common_1.FeatureType.WeakHydrogenDonor; const isHydrogenDonorA = fA.types[fA.offsets[indexA]] === donorType; if (isHydrogenDonorA) { (0, util_1.eachBondedAtom)(structure, uA, idxA, (u, idx) => { const eI = u.elements[idx]; if ((0, common_2.isHydrogen)(structure, u, eI, 'all')) { u.conformation.position(eI, p); const dist = linear_algebra_1.Vec3.distance(p, pB); if (dist < minDistA) { minDistA = dist; linear_algebra_1.Vec3.copy(posA, p); } } }); } else { (0, util_1.eachBondedAtom)(structure, uB, idxB, (u, idx) => { const eI = u.elements[idx]; if ((0, common_2.isHydrogen)(structure, u, eI, 'all')) { u.conformation.position(eI, p); const dist = linear_algebra_1.Vec3.distance(p, pA); if (dist < minDistB) { minDistB = dist; linear_algebra_1.Vec3.copy(posB, p); } } }); } } else { linear_algebra_1.Vec3.set(posA, fA.x[indexA], fA.y[indexA], fA.z[indexA]); linear_algebra_1.Vec3.transformMat4(posA, posA, uA.conformation.operator.matrix); linear_algebra_1.Vec3.set(posB, fB.x[indexB], fB.y[indexB], fB.z[indexB]); linear_algebra_1.Vec3.transformMat4(posB, posB, uB.conformation.operator.matrix); } }, style: (edgeIndex) => link_1.LinkStyle.Dashed, radius: (edgeIndex) => { const b = edges[edgeIndex]; const fA = unitsFeatures.get(b.unitA); l.unit = structure.unitMap.get(b.unitA); l.element = l.unit.elements[fA.members[fA.offsets[b.indexA]]]; const sizeA = theme.size.size(l); const fB = unitsFeatures.get(b.unitB); l.unit = structure.unitMap.get(b.unitB); l.element = l.unit.elements[fB.members[fB.offsets[b.indexB]]]; const sizeB = theme.size.size(l); return Math.min(sizeA, sizeB) * sizeFactor; }, ignore: (edgeIndex) => { if (edges[edgeIndex].props.flag === common_1.InteractionFlag.Filtered) return true; if (child) { const b = edges[edgeIndex]; if (parentDisplay === 'stub') { const childUnitA = child.unitMap.get(b.unitA); if (!childUnitA) return true; const unitA = structure.unitMap.get(b.unitA); const { offsets, members } = unitsFeatures.get(b.unitA); for (let i = offsets[b.indexA], il = offsets[b.indexA + 1]; i < il; ++i) { const eA = unitA.elements[members[i]]; if (!int_1.SortedArray.has(childUnitA.elements, eA)) return true; } } else if (parentDisplay === 'full' || parentDisplay === 'between') { let flagA = false; let flagB = false; const childUnitA = child.unitMap.get(b.unitA); if (!childUnitA) { flagA = true; } else { const unitA = structure.unitMap.get(b.unitA); const { offsets, members } = unitsFeatures.get(b.unitA); for (let i = offsets[b.indexA], il = offsets[b.indexA + 1]; i < il; ++i) { const eA = unitA.elements[members[i]]; if (!int_1.SortedArray.has(childUnitA.elements, eA)) flagA = true; } } const childUnitB = child.unitMap.get(b.unitB); if (!childUnitB) { flagB = true; } else { const unitB = structure.unitMap.get(b.unitB); const { offsets, members } = unitsFeatures.get(b.unitB); for (let i = offsets[b.indexB], il = offsets[b.indexB + 1]; i < il; ++i) { const eB = unitB.elements[members[i]]; if (!int_1.SortedArray.has(childUnitB.elements, eB)) flagB = true; } } return parentDisplay === 'full' ? flagA && flagB : flagA === flagB; } else { (0, type_helpers_1.assertUnreachable)(parentDisplay); } } return false; } }; const { mesh: m, boundingSphere } = (0, link_1.createLinkCylinderMesh)(ctx, builderProps, props, mesh); if (boundingSphere) { m.setBoundingSphere(boundingSphere); } else if (m.triangleCount > 0) { const { child } = structure; const sphere = geometry_1.Sphere3D.expand((0, geometry_1.Sphere3D)(), (child !== null && child !== void 0 ? child : structure).boundary.sphere, 1 * sizeFactor); m.setBoundingSphere(sphere); } return m; } exports.InteractionsInterUnitParams = { ...complex_visual_1.ComplexMeshParams, ...link_1.LinkCylinderParams, ...shared_1.InteractionsSharedParams, }; function InteractionsInterUnitVisual(materialId) { return (0, complex_visual_1.ComplexMeshVisual)({ defaultProps: param_definition_1.ParamDefinition.getDefaultValues(exports.InteractionsInterUnitParams), createGeometry: createInterUnitInteractionCylinderMesh, createLocationIterator: createInteractionsIterator, getLoci: getInteractionLoci, eachLocation: eachInteraction, setUpdateState: (state, newProps, currentProps, newTheme, currentTheme, newStructure, currentStructure) => { state.createGeometry = (newProps.sizeFactor !== currentProps.sizeFactor || newProps.dashCount !== currentProps.dashCount || newProps.dashScale !== currentProps.dashScale || newProps.dashCap !== currentProps.dashCap || newProps.radialSegments !== currentProps.radialSegments || newProps.ignoreHydrogens !== currentProps.ignoreHydrogens || newProps.ignoreHydrogensVariant !== currentProps.ignoreHydrogensVariant || newProps.parentDisplay !== currentProps.parentDisplay); const interactionsHash = interactions_2.InteractionsProvider.get(newStructure).version; if (state.info.interactionsHash !== interactionsHash) { state.createGeometry = true; state.updateTransform = true; state.updateColor = true; state.info.interactionsHash = interactionsHash; } } }, materialId); } function getInteractionLoci(pickingId, structure, id) { const { objectId, groupId } = pickingId; if (id === objectId) { const interactions = interactions_2.InteractionsProvider.get(structure).value; const c = interactions.contacts.edges[groupId]; const unitA = structure.unitMap.get(c.unitA); const unitB = structure.unitMap.get(c.unitB); return interactions_1.Interactions.Loci(structure, interactions, [ { unitA: unitA, indexA: c.indexA, unitB: unitB, indexB: c.indexB }, { unitA: unitB, indexA: c.indexB, unitB: unitA, indexB: c.indexA }, ]); } return loci_1.EmptyLoci; } const __unitMap = new Map(); const __contactIndicesSet = new Set(); function eachInteraction(loci, structure, apply, isMarking) { let changed = false; if (interactions_1.Interactions.isLoci(loci)) { if (!structure_1.Structure.areEquivalent(loci.data.structure, structure)) return false; const interactions = interactions_2.InteractionsProvider.get(structure).value; if (loci.data.interactions !== interactions) return false; const { contacts } = interactions; for (const c of loci.elements) { const idx = contacts.getEdgeIndex(c.indexA, c.unitA.id, c.indexB, c.unitB.id); if (idx !== -1) { if (apply(int_1.Interval.ofSingleton(idx))) changed = true; } } } else if (structure_1.StructureElement.Loci.is(loci)) { if (!structure_1.Structure.areEquivalent(loci.structure, structure)) return false; if (isMarking && loci.elements.length === 1) return false; // only a single unit const interactions = interactions_2.InteractionsProvider.get(structure).value; if (!interactions) return false; const { contacts, unitsFeatures } = interactions; for (const e of loci.elements) __unitMap.set(e.unit.id, e.indices); for (const e of loci.elements) { const { unit } = e; if (!structure_2.Unit.isAtomic(unit)) continue; int_1.OrderedSet.forEach(e.indices, v => { for (const idx of contacts.getContactIndicesForElement(v, unit)) { __contactIndicesSet.add(idx); } }); } __contactIndicesSet.forEach(i => { if (isMarking) { const { indexA, unitA, indexB, unitB } = contacts.edges[i]; const indicesA = __unitMap.get(unitA); const indicesB = __unitMap.get(unitB); if (!indicesA || !indicesB) return; const { offsets: offsetsA, members: membersA } = unitsFeatures.get(unitA); for (let j = offsetsA[indexA], jl = offsetsA[indexA + 1]; j < jl; ++j) { if (!int_1.OrderedSet.has(indicesA, membersA[j])) return; } const { offsets: offsetsB, members: membersB } = unitsFeatures.get(unitB); for (let j = offsetsB[indexB], jl = offsetsB[indexB + 1]; j < jl; ++j) { if (!int_1.OrderedSet.has(indicesB, membersB[j])) return; } } if (apply(int_1.Interval.ofSingleton(i))) changed = true; }); __unitMap.clear(); __contactIndicesSet.clear(); } return changed; } function createInteractionsIterator(structure) { const interactions = interactions_2.InteractionsProvider.get(structure).value; const { contacts } = interactions; const groupCount = contacts.edgeCount; const instanceCount = 1; const location = interactions_1.Interactions.Location(interactions, structure); const { element } = location; const getLocation = (groupIndex) => { const c = contacts.edges[groupIndex]; element.unitA = structure.unitMap.get(c.unitA); element.indexA = c.indexA; element.unitB = structure.unitMap.get(c.unitB); element.indexB = c.indexB; return location; }; return (0, location_iterator_1.LocationIterator)(groupCount, instanceCount, 1, getLocation, true); }