UNPKG

molstar

Version:

A comprehensive macromolecular library.

150 lines (149 loc) 6.79 kB
"use strict"; /** * Copyright (c) 2019 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author Alexander Rose <alexander.rose@weirdbyte.de> * * based in part on NGL (https://github.com/arose/ngl) */ Object.defineProperty(exports, "__esModule", { value: true }); exports.MetalCoordinationProvider = exports.MetalBindingProvider = exports.MetalProvider = exports.MetalCoordinationParams = void 0; const param_definition_1 = require("../../../mol-util/param-definition"); const features_1 = require("./features"); const util_1 = require("../chemistry/util"); const types_1 = require("../../../mol-model/structure/model/properties/atomic/types"); const common_1 = require("./common"); const types_2 = require("../../../mol-model/structure/model/types"); exports.MetalCoordinationParams = { distanceMax: param_definition_1.ParamDefinition.Numeric(3.0, { min: 1, max: 5, step: 0.1 }), }; const IonicTypeMetals = [ types_1.Elements.LI, types_1.Elements.NA, types_1.Elements.K, types_1.Elements.RB, types_1.Elements.CS, types_1.Elements.MG, types_1.Elements.CA, types_1.Elements.SR, types_1.Elements.BA, types_1.Elements.AL, types_1.Elements.GA, types_1.Elements.IN, types_1.Elements.TL, types_1.Elements.SC, types_1.Elements.SN, types_1.Elements.PB, types_1.Elements.BI, types_1.Elements.SB, types_1.Elements.HG ]; function addMetal(structure, unit, builder) { const { elements } = unit; const { x, y, z } = unit.model.atomicConformation; for (let i = 0, il = elements.length; i < il; ++i) { const element = (0, util_1.typeSymbol)(unit, i); let type = common_1.FeatureType.None; if (IonicTypeMetals.includes(element)) { type = common_1.FeatureType.IonicTypeMetal; } else if ((0, types_1.isTransitionMetal)(element) || element === types_1.Elements.ZN || element === types_1.Elements.CD) { type = common_1.FeatureType.TransitionMetal; } if (type) { builder.add(type, common_1.FeatureGroup.None, x[elements[i]], y[elements[i]], z[elements[i]], i); } } } function isProteinSidechain(atomname) { return !types_2.ProteinBackboneAtoms.has(atomname); } function isProteinBackbone(atomname) { return types_2.ProteinBackboneAtoms.has(atomname); } function isNucleicBackbone(atomname) { return types_2.NucleicBackboneAtoms.has(atomname); } /** * Metal binding partners (dative bond or ionic-type interaction) */ function addMetalBinding(structure, unit, builder) { const { elements } = unit; const { x, y, z } = unit.model.atomicConformation; for (let i = 0, il = elements.length; i < il; ++i) { const element = (0, util_1.typeSymbol)(unit, i); const resname = (0, util_1.compId)(unit, i); const atomname = (0, util_1.atomId)(unit, i); let dative = false; let ionic = false; const isStandardAminoacid = types_2.AminoAcidNames.has(resname); const isStandardBase = types_2.BaseNames.has(resname); if (!isStandardAminoacid && !isStandardBase) { if ((0, types_1.isHalogen)(element) || element === types_1.Elements.O || element === types_1.Elements.S) { dative = true; ionic = true; } else if (element === types_1.Elements.N) { dative = true; } } else if (isStandardAminoacid) { // main chain oxygen atom or oxygen, nitrogen and sulfur from specific amino acids if (element === types_1.Elements.O) { if (['ASP', 'GLU', 'SER', 'THR', 'TYR', 'ASN', 'GLN'].includes(resname) && isProteinSidechain(atomname)) { dative = true; ionic = true; } else if (isProteinBackbone(atomname)) { dative = true; ionic = true; } } else if (element === types_1.Elements.S && (resname === 'CYS' || resname === 'MET')) { dative = true; ionic = true; } else if (element === types_1.Elements.N) { if (resname === 'HIS' && isProteinSidechain(atomname)) { dative = true; } } } else if (isStandardBase) { // http://pubs.acs.org/doi/pdf/10.1021/acs.accounts.6b00253 // http://onlinelibrary.wiley.com/doi/10.1002/anie.200900399/full if (element === types_1.Elements.O && isNucleicBackbone(atomname)) { dative = true; ionic = true; } else if (['N3', 'N4', 'N7'].includes(atomname)) { dative = true; } else if (['O2', 'O4', 'O6'].includes(atomname)) { dative = true; ionic = true; } } if (dative) { builder.add(common_1.FeatureType.DativeBondPartner, common_1.FeatureGroup.None, x[elements[i]], y[elements[i]], z[elements[i]], i); } if (ionic) { builder.add(common_1.FeatureType.IonicTypePartner, common_1.FeatureGroup.None, x[elements[i]], y[elements[i]], z[elements[i]], i); } } } function isMetalCoordination(ti, tj) { if (ti === common_1.FeatureType.TransitionMetal) { return (tj === common_1.FeatureType.DativeBondPartner || tj === common_1.FeatureType.TransitionMetal); } else if (ti === common_1.FeatureType.IonicTypeMetal) { return (tj === common_1.FeatureType.IonicTypePartner); } } function testMetalCoordination(structure, infoA, infoB, distanceSq) { const typeA = infoA.types[infoA.feature]; const typeB = infoB.types[infoB.feature]; if (!isMetalCoordination(typeA, typeB) && !isMetalCoordination(typeB, typeA)) return; return common_1.InteractionType.MetalCoordination; } // exports.MetalProvider = features_1.Features.Provider([common_1.FeatureType.IonicTypeMetal, common_1.FeatureType.TransitionMetal], addMetal); exports.MetalBindingProvider = features_1.Features.Provider([common_1.FeatureType.IonicTypePartner, common_1.FeatureType.DativeBondPartner], addMetalBinding); exports.MetalCoordinationProvider = { name: 'metal-coordination', params: exports.MetalCoordinationParams, createTester: (props) => { return { maxDistance: props.distanceMax, requiredFeatures: new Set([common_1.FeatureType.IonicTypeMetal, common_1.FeatureType.TransitionMetal, common_1.FeatureType.IonicTypePartner, common_1.FeatureType.DativeBondPartner]), getType: (structure, infoA, infoB, distanceSq) => testMetalCoordination(structure, infoA, infoB, distanceSq) }; } };