molstar
Version:
A comprehensive macromolecular library.
153 lines (152 loc) • 5.07 kB
JavaScript
"use strict";
/**
* Copyright (c) 2020-2023 mol* contributors, licensed under MIT, See LICENSE file for more info.
*
* @author Alexander Rose <alexander.rose@weirdbyte.de>
*/
Object.defineProperty(exports, "__esModule", { value: true });
exports.BoundaryHelper = void 0;
const vec3_1 = require("../linear-algebra/3d/vec3");
const centroid_helper_1 = require("./centroid-helper");
const sphere3d_1 = require("../geometry/primitives/sphere3d");
const box3d_1 = require("./primitives/box3d");
// avoiding namespace lookup improved performance in Chrome (Aug 2020)
const v3dot = vec3_1.Vec3.dot;
const v3copy = vec3_1.Vec3.copy;
const v3scaleAndSub = vec3_1.Vec3.scaleAndSub;
const v3scaleAndAdd = vec3_1.Vec3.scaleAndAdd;
// implementing http://www.ep.liu.se/ecp/034/009/ecp083409.pdf
class BoundaryHelper {
computeExtrema(i, p) {
const d = v3dot(this.dir[i], p);
if (d < this.minDist[i]) {
this.minDist[i] = d;
v3copy(this.extrema[i * 2], p);
}
if (d > this.maxDist[i]) {
this.maxDist[i] = d;
v3copy(this.extrema[i * 2 + 1], p);
}
}
computeSphereExtrema(i, center, radius) {
const di = this.dir[i];
const d = v3dot(di, center);
if (d - radius < this.minDist[i]) {
this.minDist[i] = d - radius;
v3scaleAndSub(this.extrema[i * 2], center, di, radius);
}
if (d + radius > this.maxDist[i]) {
this.maxDist[i] = d + radius;
v3scaleAndAdd(this.extrema[i * 2 + 1], center, di, radius);
}
}
includeSphere(s) {
if (sphere3d_1.Sphere3D.hasExtrema(s) && s.extrema.length > 1) {
for (const e of s.extrema) {
this.includePosition(e);
}
}
else {
this.includePositionRadius(s.center, s.radius);
}
}
includePosition(p) {
for (let i = 0; i < this.dirLength; ++i) {
this.computeExtrema(i, p);
}
}
includePositionRadius(center, radius) {
for (let i = 0; i < this.dirLength; ++i) {
this.computeSphereExtrema(i, center, radius);
}
}
finishedIncludeStep() {
for (let i = 0; i < this.extrema.length; i++) {
this.centroidHelper.includeStep(this.extrema[i]);
}
this.centroidHelper.finishedIncludeStep();
}
radiusSphere(s) {
if (sphere3d_1.Sphere3D.hasExtrema(s) && s.extrema.length > 1) {
for (const e of s.extrema) {
this.radiusPosition(e);
}
}
else {
this.radiusPositionRadius(s.center, s.radius);
}
}
radiusPosition(p) {
this.centroidHelper.radiusStep(p);
}
radiusPositionRadius(center, radius) {
this.centroidHelper.radiusSphereStep(center, radius);
}
getSphere(sphere) {
return sphere3d_1.Sphere3D.setExtrema(this.centroidHelper.getSphere(sphere), this.extrema.slice());
}
getBox(box) {
return box3d_1.Box3D.fromVec3Array(box || (0, box3d_1.Box3D)(), this.extrema);
}
reset() {
for (let i = 0; i < this.dirLength; ++i) {
this.minDist[i] = Infinity;
this.maxDist[i] = -Infinity;
this.extrema[i * 2] = (0, vec3_1.Vec3)();
this.extrema[i * 2 + 1] = (0, vec3_1.Vec3)();
}
this.centroidHelper.reset();
}
constructor(quality) {
this.minDist = [];
this.maxDist = [];
this.extrema = [];
this.centroidHelper = new centroid_helper_1.CentroidHelper();
this.dir = getEposDir(quality);
this.dirLength = this.dir.length;
this.reset();
}
}
exports.BoundaryHelper = BoundaryHelper;
function getEposDir(quality) {
let dir;
switch (quality) {
case '6':
dir = [...Type001];
break;
case '14':
dir = [...Type001, ...Type111];
break;
case '26':
dir = [...Type001, ...Type111, ...Type011];
break;
case '98':
dir = [...Type001, ...Type111, ...Type011, ...Type012, ...Type112, ...Type122];
break;
}
return dir.map(a => {
const v = vec3_1.Vec3.create(a[0], a[1], a[2]);
return vec3_1.Vec3.normalize(v, v);
});
}
const Type001 = [
[1, 0, 0], [0, 1, 0], [0, 0, 1]
];
const Type111 = [
[1, 1, 1], [-1, 1, 1], [-1, -1, 1], [1, -1, 1]
];
const Type011 = [
[1, 1, 0], [1, -1, 0], [1, 0, 1], [1, 0, -1], [0, 1, 1], [0, 1, -1]
];
const Type012 = [
[0, 1, 2], [0, 2, 1], [1, 0, 2], [2, 0, 1], [1, 2, 0], [2, 1, 0],
[0, 1, -2], [0, 2, -1], [1, 0, -2], [2, 0, -1], [1, -2, 0], [2, -1, 0]
];
const Type112 = [
[1, 1, 2], [2, 1, 1], [1, 2, 1], [1, -1, 2], [1, 1, -2], [1, -1, -2],
[2, -1, 1], [2, 1, -1], [2, -1, -1], [1, -2, 1], [1, 2, -1], [1, -2, -1]
];
const Type122 = [
[2, 2, 1], [1, 2, 2], [2, 1, 2], [2, -2, 1], [2, 2, -1], [2, -2, -1],
[1, -2, 2], [1, 2, -2], [1, -2, -2], [2, -1, 2], [2, 1, -2], [2, -1, -2]
];