UNPKG

molstar

Version:

A comprehensive macromolecular library.

423 lines (422 loc) 15.9 kB
"use strict"; /** * Copyright (c) 2017-2019 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author David Sehnal <david.sehnal@gmail.com> */ Object.defineProperty(exports, "__esModule", { value: true }); exports.ofBounds = exports.ofRange = exports.ofSingleton = exports.Empty = void 0; exports.ofSortedArray = ofSortedArray; exports.size = size; exports.has = has; exports.indexOf = indexOf; exports.getAt = getAt; exports.min = min; exports.max = max; exports.start = start; exports.end = end; exports.hashCode = hashCode; exports.toString = toString; exports.areEqual = areEqual; exports.areIntersecting = areIntersecting; exports.isSubset = isSubset; exports.findPredecessorIndex = findPredecessorIndex; exports.findPredecessorIndexInInterval = findPredecessorIndexInInterval; exports.findRange = findRange; exports.intersectionSize = intersectionSize; exports.union = union; exports.intersect = intersect; exports.subtract = subtract; exports.forEach = forEach; exports.forEachSegment = forEachSegment; exports.indexedIntersect = indexedIntersect; const sorted_array_1 = require("../sorted-array"); const interval_1 = require("../interval"); exports.Empty = interval_1.Interval.Empty; exports.ofSingleton = interval_1.Interval.ofSingleton; exports.ofRange = interval_1.Interval.ofRange; exports.ofBounds = interval_1.Interval.ofBounds; function ofSortedArray(xs) { if (!xs.length) return exports.Empty; // check if the array is just a range if (sorted_array_1.SortedArray.isRange(xs)) return interval_1.Interval.ofRange(xs[0], xs[xs.length - 1]); return xs; } function size(set) { return interval_1.Interval.is(set) ? interval_1.Interval.size(set) : sorted_array_1.SortedArray.size(set); } function has(set, x) { return interval_1.Interval.is(set) ? interval_1.Interval.has(set, x) : sorted_array_1.SortedArray.has(set, x); } /** Returns the index of `x` in `set` or -1 if not found. */ function indexOf(set, x) { return interval_1.Interval.is(set) ? interval_1.Interval.indexOf(set, x) : sorted_array_1.SortedArray.indexOf(set, x); } function getAt(set, i) { return interval_1.Interval.is(set) ? interval_1.Interval.getAt(set, i) : set[i]; } function min(set) { return interval_1.Interval.is(set) ? interval_1.Interval.min(set) : sorted_array_1.SortedArray.min(set); } function max(set) { return interval_1.Interval.is(set) ? interval_1.Interval.max(set) : sorted_array_1.SortedArray.max(set); } function start(set) { return interval_1.Interval.is(set) ? interval_1.Interval.start(set) : sorted_array_1.SortedArray.start(set); } function end(set) { return interval_1.Interval.is(set) ? interval_1.Interval.end(set) : sorted_array_1.SortedArray.end(set); } function hashCode(set) { return interval_1.Interval.is(set) ? interval_1.Interval.hashCode(set) : sorted_array_1.SortedArray.hashCode(set); } // TODO: possibly add more hash functions to allow for multilevel hashing. function toString(set) { return interval_1.Interval.is(set) ? interval_1.Interval.toString(set) : sorted_array_1.SortedArray.toString(set); } function areEqual(a, b) { if (interval_1.Interval.is(a)) { if (interval_1.Interval.is(b)) return interval_1.Interval.areEqual(a, b); return areEqualIS(a, b); } else if (interval_1.Interval.is(b)) return areEqualIS(b, a); return sorted_array_1.SortedArray.areEqual(a, b); } function areIntersecting(a, b) { if (interval_1.Interval.is(a)) { if (interval_1.Interval.is(b)) return interval_1.Interval.areIntersecting(a, b); return areIntersectingSI(b, a); } else if (interval_1.Interval.is(b)) return areIntersectingSI(a, b); return sorted_array_1.SortedArray.areIntersecting(a, b); } /** Check if the 2nd argument is a subset of the 1st */ function isSubset(a, b) { if (interval_1.Interval.is(a)) { if (interval_1.Interval.is(b)) return interval_1.Interval.isSubInterval(a, b); return isSubsetIS(a, b); } else if (interval_1.Interval.is(b)) return isSubsetSI(a, b); return sorted_array_1.SortedArray.isSubset(a, b); } function findPredecessorIndex(set, x) { return interval_1.Interval.is(set) ? interval_1.Interval.findPredecessorIndex(set, x) : sorted_array_1.SortedArray.findPredecessorIndex(set, x); } function findPredecessorIndexInInterval(set, x, bounds) { return interval_1.Interval.is(set) ? interval_1.Interval.findPredecessorIndexInInterval(set, x, bounds) : sorted_array_1.SortedArray.findPredecessorIndexInInterval(set, x, bounds); } function findRange(set, min, max) { return interval_1.Interval.is(set) ? interval_1.Interval.findRange(set, min, max) : sorted_array_1.SortedArray.findRange(set, min, max); } function intersectionSize(a, b) { if (interval_1.Interval.is(a)) { if (interval_1.Interval.is(b)) return interval_1.Interval.intersectionSize(a, b); return intersectionSizeSI(b, a); } else if (interval_1.Interval.is(b)) return intersectionSizeSI(a, b); return sorted_array_1.SortedArray.intersectionSize(a, b); } function union(a, b) { if (interval_1.Interval.is(a)) { if (interval_1.Interval.is(b)) return unionII(a, b); return unionSI(b, a); } else if (interval_1.Interval.is(b)) return unionSI(a, b); return ofSortedArray(sorted_array_1.SortedArray.union(a, b)); } function intersect(a, b) { if (interval_1.Interval.is(a)) { if (interval_1.Interval.is(b)) return interval_1.Interval.intersect(a, b); return intersectSI(b, a); } else if (interval_1.Interval.is(b)) return intersectSI(a, b); return ofSortedArray(sorted_array_1.SortedArray.intersect(a, b)); } function subtract(a, b) { if (interval_1.Interval.is(a)) { if (interval_1.Interval.is(b)) return subtractII(a, b); return subtractIS(a, b); } else if (interval_1.Interval.is(b)) return subtractSI(a, b); return ofSortedArray(sorted_array_1.SortedArray.subtract(a, b)); } function areEqualIS(a, b) { return interval_1.Interval.size(a) === sorted_array_1.SortedArray.size(b) && interval_1.Interval.start(a) === sorted_array_1.SortedArray.start(b) && interval_1.Interval.end(a) === sorted_array_1.SortedArray.end(b); } function areIntersectingSI(a, b) { return a.length !== 0 && interval_1.Interval.size(sorted_array_1.SortedArray.findRange(a, interval_1.Interval.min(b), interval_1.Interval.max(b))) !== 0; } function isSubsetSI(a, b) { const minB = interval_1.Interval.min(b), maxB = interval_1.Interval.max(b); if (maxB - minB + 1 === 0) return true; const minA = sorted_array_1.SortedArray.min(a), maxA = sorted_array_1.SortedArray.max(a); if (minB < minA || maxB > maxA) return false; const r = sorted_array_1.SortedArray.findRange(a, minB, maxB); return interval_1.Interval.size(r) === interval_1.Interval.size(b); } function isSubsetIS(a, b) { const minA = interval_1.Interval.min(a), maxA = interval_1.Interval.max(a); if (maxA - minA + 1 === 0) return false; const minB = sorted_array_1.SortedArray.min(b), maxB = sorted_array_1.SortedArray.max(b); return minB >= minA && maxB <= maxA; } function areRangesIntersecting(a, b) { const sa = size(a), sb = size(b); if (sa === 0 && sb === 0) return true; return sa > 0 && sb > 0 && max(a) >= min(b) && min(a) <= max(b); } function isRangeSubset(a, b) { if (!size(a)) return size(b) === 0; if (!size(b)) return true; return min(a) <= min(b) && max(a) >= max(b); } function unionII(a, b) { if (interval_1.Interval.areEqual(a, b)) return a; const sizeA = interval_1.Interval.size(a), sizeB = interval_1.Interval.size(b); if (!sizeB) return a; if (!sizeA) return b; const minA = interval_1.Interval.min(a), minB = interval_1.Interval.min(b); if (areRangesIntersecting(a, b)) return interval_1.Interval.ofRange(Math.min(minA, minB), Math.max(interval_1.Interval.max(a), interval_1.Interval.max(b))); let lSize, lMin, rSize, rMin; if (minA < minB) { lSize = sizeA; lMin = minA; rSize = sizeB; rMin = minB; } else { lSize = sizeB; lMin = minB; rSize = sizeA; rMin = minA; } const arr = new Int32Array(sizeA + sizeB); for (let i = 0; i < lSize; i++) arr[i] = i + lMin; for (let i = 0; i < rSize; i++) arr[i + lSize] = i + rMin; return ofSortedArray(arr); } function unionSI(a, b) { const bSize = interval_1.Interval.size(b); if (!bSize) return a; // is the array fully contained in the range? if (isRangeSubset(b, a)) return b; const min = interval_1.Interval.min(b), max = interval_1.Interval.max(b); const r = sorted_array_1.SortedArray.findRange(a, min, max); const start = interval_1.Interval.start(r), end = interval_1.Interval.end(r); const indices = new Int32Array(start + (a.length - end) + bSize); let offset = 0; for (let i = 0; i < start; i++) indices[offset++] = a[i]; for (let i = min; i <= max; i++) indices[offset++] = i; for (let i = end, _i = a.length; i < _i; i++) indices[offset++] = a[i]; return ofSortedArray(indices); } function intersectionSizeSI(a, b) { if (!interval_1.Interval.size(b)) return 0; const r = sorted_array_1.SortedArray.findRange(a, interval_1.Interval.min(b), interval_1.Interval.max(b)); return interval_1.Interval.end(r) - interval_1.Interval.start(r); } function intersectSI(a, b) { if (!interval_1.Interval.size(b)) return exports.Empty; const r = sorted_array_1.SortedArray.findRange(a, interval_1.Interval.min(b), interval_1.Interval.max(b)); const start = interval_1.Interval.start(r), end = interval_1.Interval.end(r); const resultSize = end - start; if (!resultSize) return exports.Empty; if (resultSize === a.length) return a; const indices = new Int32Array(resultSize); let offset = 0; for (let i = start; i < end; i++) { indices[offset++] = a[i]; } return ofSortedArray(indices); } function subtractII(a, b) { if (interval_1.Interval.areEqual(a, b)) return exports.Empty; if (!interval_1.Interval.areIntersecting(a, b)) return a; const minA = interval_1.Interval.min(a), maxA = interval_1.Interval.max(a); const minB = interval_1.Interval.min(b), maxB = interval_1.Interval.max(b); if (maxA < minA || maxB < minB) return a; // is A subset of B? ==> Empty if (interval_1.Interval.isSubInterval(b, a)) return exports.Empty; if (interval_1.Interval.isSubInterval(a, b)) { // this splits the interval into two, gotta represent it as a set. const l = minB - minA, r = maxA - maxB; if (l <= 0) return interval_1.Interval.ofRange(maxB + 1, maxB + r); if (r <= 0) return interval_1.Interval.ofRange(minA, minA + l - 1); const ret = new Int32Array(l + r); let offset = 0; for (let i = 0; i < l; i++) ret[offset++] = minA + i; for (let i = 1; i <= r; i++) ret[offset++] = maxB + i; return ofSortedArray(ret); } if (minA < minB) return interval_1.Interval.ofRange(minA, minB - 1); return interval_1.Interval.ofRange(maxB + 1, maxA); } function subtractSI(a, b) { const min = interval_1.Interval.min(b), max = interval_1.Interval.max(b); // is empty? if (max < min) return a; const r = sorted_array_1.SortedArray.findRange(a, min, max); const start = interval_1.Interval.start(r), end = interval_1.Interval.end(r); const resultSize = a.length - (end - start); // A is subset of B if (resultSize <= 0) return exports.Empty; // No common elements if (resultSize === a.length) return a; const ret = new Int32Array(resultSize); let offset = 0; for (let i = 0; i < start; i++) ret[offset++] = a[i]; for (let i = end, _i = a.length; i < _i; i++) ret[offset++] = a[i]; return ofSortedArray(ret); } function subtractIS(a, b) { const min = interval_1.Interval.min(a), max = interval_1.Interval.max(a); // is empty? if (max < min) return a; const rSize = max - min + 1; const interval = sorted_array_1.SortedArray.findRange(b, min, max); const start = interval_1.Interval.start(interval), end = interval_1.Interval.end(interval); const commonCount = end - start; // No common elements. if (commonCount === 0) return a; const resultSize = rSize - commonCount; // A is subset of B if (resultSize <= 0) return exports.Empty; const ret = new Int32Array(resultSize); const li = b.length - 1; const fst = b[Math.min(start, li)], last = b[Math.min(end, li)]; let offset = 0; for (let i = min; i < fst; i++) ret[offset++] = i; for (let i = fst; i <= last; i++) { if (sorted_array_1.SortedArray.indexOfInInterval(b, i, interval) < 0) ret[offset++] = i; } for (let i = last + 1; i <= max; i++) ret[offset++] = i; return ofSortedArray(ret); } function forEach(set, f, ctx) { if (interval_1.Interval.is(set)) { const start = interval_1.Interval.min(set); for (let i = start, _i = interval_1.Interval.max(set); i <= _i; i++) { f(i, i - start, ctx); } } else { for (let i = 0, _i = set.length; i < _i; i++) { f(set[i], i, ctx); } } return ctx; } function forEachSegment(set, segment, f, ctx) { if (interval_1.Interval.is(set)) { let sI = 0; for (let i = interval_1.Interval.min(set), _i = interval_1.Interval.max(set); i <= _i; i++) { const s = segment(i); let endI = i + 1; while (endI < _i && segment(endI) === s) endI++; i = endI - 1; f(s, sI, ctx); sI++; } } else { let sI = 0; for (let i = 0, _i = set.length; i < _i; i++) { const s = segment(set[i]); let endI = i + 1; while (endI < _i && segment(set[endI]) === s) endI++; i = endI - 1; f(s, sI, ctx); sI++; } } return ctx; } function indexedIntersect(idxA, a, b) { if (a === b) return idxA; const lenI = size(idxA), lenA = a.length, lenB = b.length; if (lenI === 0 || lenA === 0 || lenB === 0) return exports.Empty; const startJ = sorted_array_1.SortedArray.findPredecessorIndex(b, a[min(idxA)]); const endJ = sorted_array_1.SortedArray.findPredecessorIndex(b, a[max(idxA)] + 1); let commonCount = 0; let offset = 0; let O = 0; let j = startJ; while (O < lenI && j < endJ) { const x = a[getAt(idxA, O)], y = b[j]; if (x < y) { O++; } else if (x > y) { j++; } else { commonCount++; O++; j++; } } // no common elements if (commonCount === 0) return exports.Empty; // A === B if (commonCount === lenA && commonCount === lenB) return idxA; const indices = new Int32Array(commonCount); offset = 0; O = 0; j = startJ; while (O < lenI && j < endJ) { const x = a[getAt(idxA, O)], y = b[j]; if (x < y) { O++; } else if (x > y) { j++; } else { indices[offset++] = j; O++; j++; } } return ofSortedArray(indices); }