UNPKG

molstar

Version:

A comprehensive macromolecular library.

167 lines (166 loc) 9.1 kB
/** * Copyright (c) 2023 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author Gianluca Tomasello <giagitom@gmail.com> * @author Alexander Rose <alexander.rose@weirdbyte.de> */ import { ParamDefinition as PD } from '../../../mol-util/param-definition'; import { Vec3 } from '../../../mol-math/linear-algebra'; import { Unit } from '../../../mol-model/structure'; import { Mesh } from '../../../mol-geo/geometry/mesh/mesh'; import { MeshBuilder } from '../../../mol-geo/geometry/mesh/mesh-builder'; import { Segmentation } from '../../../mol-data/int'; import { isNucleic } from '../../../mol-model/structure/model/types'; import { UnitsMeshParams, UnitsMeshVisual } from '../units-visual'; import { NucleotideLocationIterator, getNucleotideElementLoci, eachNucleotideElement, getNucleotideBaseType, createNucleicIndices, setSugarIndices, hasSugarIndices, setPurinIndices, hasPyrimidineIndices, setPyrimidineIndices, hasPurinIndices } from './util/nucleotide'; import { Sphere3D } from '../../../mol-math/geometry'; // TODO support ring-fills for multiple locations (including from microheterogeneity) const pN1 = Vec3(); const pC2 = Vec3(); const pN3 = Vec3(); const pC4 = Vec3(); const pC5 = Vec3(); const pC6 = Vec3(); const pN7 = Vec3(); const pC8 = Vec3(); const pN9 = Vec3(); const pC1_1 = Vec3(); const pC2_1 = Vec3(); const pC3_1 = Vec3(); const pC4_1 = Vec3(); const pO4_1 = Vec3(); const mid = Vec3(); const normal = Vec3(); const shift = Vec3(); export const NucleotideAtomicRingFillMeshParams = { sizeFactor: PD.Numeric(0.2, { min: 0, max: 10, step: 0.01 }), thicknessFactor: PD.Numeric(1, { min: 0, max: 2, step: 0.01 }), }; export const DefaultNucleotideAtomicRingFillMeshProps = PD.getDefaultValues(NucleotideAtomicRingFillMeshParams); const positionsRing5_6 = new Float32Array(2 * 9 * 3); const stripIndicesRing5_6 = new Uint32Array([0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 14, 15, 12, 13, 8, 9, 10, 11, 0, 1]); const fanIndicesTopRing5_6 = new Uint32Array([8, 12, 14, 16, 6, 4, 2, 0, 10]); const fanIndicesBottomRing5_6 = new Uint32Array([9, 11, 1, 3, 5, 7, 17, 15, 13]); const positionsRing5 = new Float32Array(2 * 6 * 3); const stripIndicesRing5 = new Uint32Array([2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 2, 3]); const fanIndicesTopRing5 = new Uint32Array([0, 10, 8, 6, 4, 2, 10]); const fanIndicesBottomRing5 = new Uint32Array([1, 3, 5, 7, 9, 11, 3]); const positionsRing6 = new Float32Array(2 * 6 * 3); const stripIndicesRing6 = new Uint32Array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1]); const fanIndicesTopRing6 = new Uint32Array([0, 10, 8, 6, 4, 2]); const fanIndicesBottomRing6 = new Uint32Array([1, 3, 5, 7, 9, 11]); const tmpShiftV = Vec3(); function shiftPositions(out, dir, ...positions) { for (let i = 0, il = positions.length; i < il; ++i) { const v = positions[i]; Vec3.toArray(Vec3.add(tmpShiftV, v, dir), out, (i * 2) * 3); Vec3.toArray(Vec3.sub(tmpShiftV, v, dir), out, (i * 2 + 1) * 3); } } function createNucleotideAtomicRingFillMesh(ctx, unit, structure, theme, props, mesh) { if (!Unit.isAtomic(unit)) return Mesh.createEmpty(mesh); const nucleotideElementCount = unit.nucleotideElements.length; if (!nucleotideElementCount) return Mesh.createEmpty(mesh); const { sizeFactor, thicknessFactor } = props; const vertexCount = nucleotideElementCount * 25; const builderState = MeshBuilder.createState(vertexCount, vertexCount / 4, mesh); const { elements, model, conformation: c } = unit; const { chainAtomSegments, residueAtomSegments } = model.atomicHierarchy; const { moleculeType } = model.atomicHierarchy.derived.residue; const chainIt = Segmentation.transientSegments(chainAtomSegments, elements); const residueIt = Segmentation.transientSegments(residueAtomSegments, elements); const thickness = sizeFactor * thicknessFactor; let i = 0; while (chainIt.hasNext) { residueIt.setSegment(chainIt.move()); while (residueIt.hasNext) { const { index: residueIndex } = residueIt.move(); if (isNucleic(moleculeType[residueIndex])) { const idx = createNucleicIndices(); builderState.currentGroup = i; setSugarIndices(idx, unit, residueIndex); if (hasSugarIndices(idx)) { c.invariantPosition(idx.C1_1, pC1_1); c.invariantPosition(idx.C2_1, pC2_1); c.invariantPosition(idx.C3_1, pC3_1); c.invariantPosition(idx.C4_1, pC4_1); c.invariantPosition(idx.O4_1, pO4_1); // sugar ring Vec3.triangleNormal(normal, pC3_1, pC4_1, pC1_1); Vec3.scale(mid, Vec3.add(mid, pO4_1, Vec3.add(mid, pC4_1, Vec3.add(mid, pC3_1, Vec3.add(mid, pC1_1, pC2_1)))), 0.2 /* 1 / 5 */); Vec3.scale(shift, normal, thickness); shiftPositions(positionsRing5, shift, mid, pC3_1, pC4_1, pO4_1, pC1_1, pC2_1); MeshBuilder.addTriangleStrip(builderState, positionsRing5, stripIndicesRing5); MeshBuilder.addTriangleFanWithNormal(builderState, positionsRing5, fanIndicesTopRing5, normal); Vec3.negate(normal, normal); MeshBuilder.addTriangleFanWithNormal(builderState, positionsRing5, fanIndicesBottomRing5, normal); } const { isPurine, isPyrimidine } = getNucleotideBaseType(unit, residueIndex); if (isPurine) { setPurinIndices(idx, unit, residueIndex); if (hasPurinIndices(idx)) { c.invariantPosition(idx.N1, pN1); c.invariantPosition(idx.C2, pC2); c.invariantPosition(idx.N3, pN3); c.invariantPosition(idx.C4, pC4); c.invariantPosition(idx.C5, pC5); c.invariantPosition(idx.C6, pC6); c.invariantPosition(idx.N7, pN7); c.invariantPosition(idx.C8, pC8), c.invariantPosition(idx.N9, pN9); // base ring Vec3.triangleNormal(normal, pN1, pC4, pC5); Vec3.scale(shift, normal, thickness); shiftPositions(positionsRing5_6, shift, pN1, pC2, pN3, pC4, pC5, pC6, pN7, pC8, pN9); MeshBuilder.addTriangleStrip(builderState, positionsRing5_6, stripIndicesRing5_6); MeshBuilder.addTriangleFanWithNormal(builderState, positionsRing5_6, fanIndicesTopRing5_6, normal); Vec3.negate(normal, normal); MeshBuilder.addTriangleFanWithNormal(builderState, positionsRing5_6, fanIndicesBottomRing5_6, normal); } } else if (isPyrimidine) { setPyrimidineIndices(idx, unit, residueIndex); if (hasPyrimidineIndices(idx)) { c.invariantPosition(idx.N1, pN1); c.invariantPosition(idx.C2, pC2); c.invariantPosition(idx.N3, pN3); c.invariantPosition(idx.C4, pC4); c.invariantPosition(idx.C5, pC5); c.invariantPosition(idx.C6, pC6); // base ring Vec3.triangleNormal(normal, pN1, pC4, pC5); Vec3.scale(shift, normal, thickness); shiftPositions(positionsRing6, shift, pN1, pC2, pN3, pC4, pC5, pC6); MeshBuilder.addTriangleStrip(builderState, positionsRing6, stripIndicesRing6); MeshBuilder.addTriangleFanWithNormal(builderState, positionsRing6, fanIndicesTopRing6, normal); Vec3.negate(normal, normal); MeshBuilder.addTriangleFanWithNormal(builderState, positionsRing6, fanIndicesBottomRing6, normal); } } ++i; } } } const m = MeshBuilder.getMesh(builderState); const sphere = Sphere3D.expand(Sphere3D(), unit.boundary.sphere, thickness); m.setBoundingSphere(sphere); return m; } export const NucleotideAtomicRingFillParams = { ...UnitsMeshParams, ...NucleotideAtomicRingFillMeshParams }; export function NucleotideAtomicRingFillVisual(materialId) { return UnitsMeshVisual({ defaultProps: PD.getDefaultValues(NucleotideAtomicRingFillParams), createGeometry: createNucleotideAtomicRingFillMesh, createLocationIterator: NucleotideLocationIterator.fromGroup, getLoci: getNucleotideElementLoci, eachLocation: eachNucleotideElement, setUpdateState: (state, newProps, currentProps) => { state.createGeometry = (newProps.sizeFactor !== currentProps.sizeFactor || newProps.thicknessFactor !== currentProps.thicknessFactor); } }, materialId); }