UNPKG

molstar

Version:

A comprehensive macromolecular library.

235 lines (234 loc) 11 kB
/** * Copyright (c) 2019-2024 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author Alexander Rose <alexander.rose@weirdbyte.de> */ import { ParamDefinition as PD } from '../../../mol-util/param-definition'; import { UnitsMeshParams, UnitsMeshVisual } from '../../../mol-repr/structure/units-visual'; import { ElementIterator, getElementLoci, eachElement, getSerialElementLoci, eachSerialElement, makeElementIgnoreTest } from '../../../mol-repr/structure/visual/util/element'; import { StructureElement } from '../../../mol-model/structure'; import { Mesh } from '../../../mol-geo/geometry/mesh/mesh'; import { sphereVertexCount } from '../../../mol-geo/primitive/sphere'; import { MeshBuilder } from '../../../mol-geo/geometry/mesh/mesh-builder'; import { Vec3, Mat3, Tensor, EPSILON } from '../../../mol-math/linear-algebra'; import { addEllipsoid } from '../../../mol-geo/geometry/mesh/builder/ellipsoid'; import { AtomSiteAnisotrop } from '../../../mol-model-formats/structure/property/anisotropic'; import { equalEps } from '../../../mol-math/linear-algebra/3d/common'; import { addSphere } from '../../../mol-geo/geometry/mesh/builder/sphere'; import { Sphere3D } from '../../../mol-math/geometry'; import { BaseGeometry } from '../../../mol-geo/geometry/base'; import { ComplexMeshParams, ComplexMeshVisual } from '../complex-visual'; // avoiding namespace lookup improved performance in Chrome (Aug 2020) const v3add = Vec3.add; export function createEllipsoidMesh(ctx, unit, structure, theme, props, mesh) { const { child } = structure; const childUnit = child === null || child === void 0 ? void 0 : child.unitMap.get(unit.id); if (child && !childUnit) return Mesh.createEmpty(mesh); const { detail, sizeFactor } = props; const { elements, model } = unit; const elementCount = elements.length; const vertexCount = elementCount * sphereVertexCount(detail); const builderState = MeshBuilder.createState(vertexCount, vertexCount / 2, mesh); const atomSiteAnisotrop = AtomSiteAnisotrop.Provider.get(model); if (!atomSiteAnisotrop) return Mesh.createEmpty(mesh); const v = Vec3(); const mat = Mat3(); const eigvals = Vec3(); const eigvec1 = Vec3(); const eigvec2 = Vec3(); const { elementToAnsiotrop, data } = atomSiteAnisotrop; const { U } = data; const space = data._schema.U.space; const c = unit.conformation; const l = StructureElement.Location.create(structure); l.unit = unit; const ignore = makeElementIgnoreTest(structure, unit, props); const center = Vec3(); let count = 0; for (let i = 0; i < elementCount; i++) { const ei = elements[i]; const ai = elementToAnsiotrop[ei]; if (ai === -1) continue; if (ignore && ignore(elements[i])) continue; l.element = ei; c.invariantPosition(ei, v); v3add(center, center, v); count += 1; builderState.currentGroup = i; Tensor.toMat3(mat, space, U.value(ai)); Mat3.symmtricFromLower(mat, mat); Mat3.symmetricEigenvalues(eigvals, mat); Mat3.eigenvector(eigvec1, mat, eigvals[1]); Mat3.eigenvector(eigvec2, mat, eigvals[2]); for (let j = 0; j < 3; ++j) { // show 50% probability surface, needs sqrt as U matrix is in angstrom-squared // take abs of eigenvalue to avoid reflection // multiply by given size-factor eigvals[j] = sizeFactor * 1.5958 * Math.sqrt(Math.abs(eigvals[j])); } if (equalEps(eigvals[0], eigvals[1], EPSILON) && equalEps(eigvals[1], eigvals[2], EPSILON)) { addSphere(builderState, v, eigvals[0], detail); } else { addEllipsoid(builderState, v, eigvec2, eigvec1, eigvals, detail); } } const m = MeshBuilder.getMesh(builderState); if (count === 0) return m; // re-use boundingSphere if it has not changed much let boundingSphere; Vec3.scale(center, center, 1 / count); const oldBoundingSphere = mesh ? Sphere3D.clone(mesh.boundingSphere) : undefined; if (oldBoundingSphere && Vec3.distance(center, oldBoundingSphere.center) / oldBoundingSphere.radius < 0.1) { boundingSphere = oldBoundingSphere; } else { boundingSphere = Sphere3D.expand(Sphere3D(), (childUnit !== null && childUnit !== void 0 ? childUnit : unit).boundary.sphere, 1 * sizeFactor * 2); } m.setBoundingSphere(boundingSphere); return m; } export const EllipsoidMeshParams = { ...UnitsMeshParams, sizeFactor: PD.Numeric(1, { min: 0, max: 10, step: 0.1 }), detail: PD.Numeric(0, { min: 0, max: 3, step: 1 }, BaseGeometry.CustomQualityParamInfo), ignoreHydrogens: PD.Boolean(false), ignoreHydrogensVariant: PD.Select('all', PD.arrayToOptions(['all', 'non-polar'])), traceOnly: PD.Boolean(false), }; export function EllipsoidMeshVisual(materialId) { return UnitsMeshVisual({ defaultProps: PD.getDefaultValues(EllipsoidMeshParams), createGeometry: createEllipsoidMesh, createLocationIterator: ElementIterator.fromGroup, getLoci: getElementLoci, eachLocation: eachElement, setUpdateState: (state, newProps, currentProps) => { state.createGeometry = (newProps.sizeFactor !== currentProps.sizeFactor || newProps.detail !== currentProps.detail || newProps.ignoreHydrogens !== currentProps.ignoreHydrogens); } }, materialId); } // export function createStructureEllipsoidMesh(ctx, structure, theme, props, mesh) { const { child } = structure; const { detail, sizeFactor } = props; const { getSerialIndex } = structure.serialMapping; const structureElementCount = structure.elementCount; const vertexCount = structureElementCount * sphereVertexCount(detail); const builderState = MeshBuilder.createState(vertexCount, vertexCount / 2, mesh); const v = Vec3(); const mat = Mat3(); const eigvals = Vec3(); const eigvec1 = Vec3(); const eigvec2 = Vec3(); const center = Vec3(); let count = 0; for (const unit of structure.units) { const childUnit = child === null || child === void 0 ? void 0 : child.unitMap.get(unit.id); if (child && !childUnit) return Mesh.createEmpty(mesh); const { elements, model } = unit; const elementCount = elements.length; const atomSiteAnisotrop = AtomSiteAnisotrop.Provider.get(model); if (!atomSiteAnisotrop) return Mesh.createEmpty(mesh); const ignore = makeElementIgnoreTest(structure, unit, props); const { elementToAnsiotrop, data } = atomSiteAnisotrop; const { U } = data; const space = data._schema.U.space; const c = unit.conformation; const l = StructureElement.Location.create(structure); l.unit = unit; // for (let i = 0 as StructureElement.UnitIndex; i < elementCount; i++) { // if (ignore && ignore(elements[i])) continue; // if (lone && Unit.isAtomic(unit) && hasUnitVisibleBonds(unit, props) && bondCount(structure, unit, i) !== 0) continue; // c.position(elements[i], p); // v3add(center, center, p); // count += 1; // const si = getSerialIndex(unit, elements[i]); // v3scaleAndAdd(s, p, v3unitX, r); // v3scaleAndAdd(e, p, v3unitX, -r); // builder.add(s[0], s[1], s[2], e[0], e[1], e[2], si); // v3scaleAndAdd(s, p, v3unitY, r); // v3scaleAndAdd(e, p, v3unitY, -r); // builder.add(s[0], s[1], s[2], e[0], e[1], e[2], si); // v3scaleAndAdd(s, p, v3unitZ, r); // v3scaleAndAdd(e, p, v3unitZ, -r); // builder.add(s[0], s[1], s[2], e[0], e[1], e[2], si); // } for (let i = 0; i < elementCount; i++) { const ei = elements[i]; const ai = elementToAnsiotrop[ei]; if (ai === -1) continue; if (ignore && ignore(elements[i])) continue; l.element = ei; c.position(ei, v); v3add(center, center, v); count += 1; builderState.currentGroup = getSerialIndex(unit, elements[i]); Tensor.toMat3(mat, space, U.value(ai)); Mat3.symmtricFromLower(mat, mat); Mat3.symmetricEigenvalues(eigvals, mat); Mat3.eigenvector(eigvec1, mat, eigvals[1]); Mat3.eigenvector(eigvec2, mat, eigvals[2]); for (let j = 0; j < 3; ++j) { // show 50% probability surface, needs sqrt as U matrix is in angstrom-squared // take abs of eigenvalue to avoid reflection // multiply by given size-factor eigvals[j] = sizeFactor * 1.5958 * Math.sqrt(Math.abs(eigvals[j])); } if (equalEps(eigvals[0], eigvals[1], EPSILON) && equalEps(eigvals[1], eigvals[2], EPSILON)) { addSphere(builderState, v, eigvals[0], detail); } else { addEllipsoid(builderState, v, eigvec2, eigvec1, eigvals, detail); } } } const m = MeshBuilder.getMesh(builderState); if (count === 0) return m; // re-use boundingSphere if it has not changed much let boundingSphere; Vec3.scale(center, center, 1 / count); const oldBoundingSphere = mesh ? Sphere3D.clone(mesh.boundingSphere) : undefined; if (oldBoundingSphere && Vec3.distance(center, oldBoundingSphere.center) / oldBoundingSphere.radius < 1.0) { boundingSphere = oldBoundingSphere; } else { boundingSphere = Sphere3D.expand(Sphere3D(), (child !== null && child !== void 0 ? child : structure).boundary.sphere, 1 * sizeFactor * 2); } m.setBoundingSphere(boundingSphere); return m; } export const StructureEllipsoidMeshParams = { ...ComplexMeshParams, sizeFactor: PD.Numeric(1, { min: 0, max: 10, step: 0.1 }), detail: PD.Numeric(0, { min: 0, max: 3, step: 1 }, BaseGeometry.CustomQualityParamInfo), ignoreHydrogens: PD.Boolean(false), ignoreHydrogensVariant: PD.Select('all', PD.arrayToOptions(['all', 'non-polar'])), traceOnly: PD.Boolean(false), }; export function StructureEllipsoidMeshVisual(materialId) { return ComplexMeshVisual({ defaultProps: PD.getDefaultValues(StructureEllipsoidMeshParams), createGeometry: createStructureEllipsoidMesh, createLocationIterator: ElementIterator.fromStructure, getLoci: getSerialElementLoci, eachLocation: eachSerialElement, setUpdateState: (state, newProps, currentProps) => { state.createGeometry = (newProps.sizeFactor !== currentProps.sizeFactor || newProps.detail !== currentProps.detail || newProps.ignoreHydrogens !== currentProps.ignoreHydrogens); } }, materialId); }