UNPKG

molstar

Version:

A comprehensive macromolecular library.

109 lines (108 loc) 4.59 kB
/** * Copyright (c) 2018-2025 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author David Sehnal <david.sehnal@gmail.com> * @author Alexander Rose <alexander.rose@weirdbyte.de> */ import { Box3D, Sphere3D } from '../../mol-math/geometry'; import { Tensor, Mat4, Vec3 } from '../../mol-math/linear-algebra'; import { calculateHistogram } from '../../mol-math/histogram'; import { lerp } from '../../mol-math/interpolate'; var Grid; (function (Grid) { Grid.One = { transform: { kind: 'matrix', matrix: Mat4.identity() }, cells: Tensor.create(Tensor.Space([1, 1, 1], [0, 1, 2]), Tensor.Data1([0])), stats: { min: 0, max: 0, mean: 0, sigma: 0 }, }; const _scale = Mat4.zero(), _translate = Mat4.zero(); function getGridToCartesianTransform(grid) { if (grid.transform.kind === 'matrix') { return Mat4.copy(Mat4(), grid.transform.matrix); } if (grid.transform.kind === 'spacegroup') { const { cells: { space } } = grid; const scale = Mat4.fromScaling(_scale, Vec3.div(Vec3.zero(), Box3D.size(Vec3.zero(), grid.transform.fractionalBox), Vec3.ofArray(space.dimensions))); const translate = Mat4.fromTranslation(_translate, grid.transform.fractionalBox.min); return Mat4.mul3(Mat4.zero(), grid.transform.cell.fromFractional, translate, scale); } return Mat4.identity(); } Grid.getGridToCartesianTransform = getGridToCartesianTransform; function areEquivalent(gridA, gridB) { return gridA === gridB; } Grid.areEquivalent = areEquivalent; function isEmpty(grid) { return grid.cells.data.length === 0; } Grid.isEmpty = isEmpty; function getBoundingSphere(grid, boundingSphere) { if (!boundingSphere) boundingSphere = Sphere3D(); const dimensions = grid.cells.space.dimensions; const transform = Grid.getGridToCartesianTransform(grid); return Sphere3D.fromDimensionsAndTransform(boundingSphere, dimensions, transform); } Grid.getBoundingSphere = getBoundingSphere; /** * Compute histogram with given bin count. * Cached on the Grid object. */ function getHistogram(grid, binCount) { let histograms = grid._historams; if (!histograms) { histograms = grid._historams = {}; } if (!histograms[binCount]) { histograms[binCount] = calculateHistogram(grid.cells.data, binCount, { min: grid.stats.min, max: grid.stats.max }); } return histograms[binCount]; } Grid.getHistogram = getHistogram; function makeGetTrilinearlyInterpolated(grid, transform) { const cartnToGrid = Grid.getGridToCartesianTransform(grid); Mat4.invert(cartnToGrid, cartnToGrid); const gridCoords = Vec3(); const { stats } = grid; const { dimensions, get } = grid.cells.space; const data = grid.cells.data; const [mi, mj, mk] = dimensions; return function getTrilinearlyInterpolated(position) { Vec3.copy(gridCoords, position); Vec3.transformMat4(gridCoords, gridCoords, cartnToGrid); const i = Math.trunc(gridCoords[0]); const j = Math.trunc(gridCoords[1]); const k = Math.trunc(gridCoords[2]); if (i < 0 || i >= mi || j < 0 || j >= mj || k < 0 || k >= mk) { return Number.NaN; } const u = gridCoords[0] - i; const v = gridCoords[1] - j; const w = gridCoords[2] - k; // Tri-linear interpolation for the value const ii = Math.min(i + 1, mi - 1); const jj = Math.min(j + 1, mj - 1); const kk = Math.min(k + 1, mk - 1); let a = get(data, i, j, k); let b = get(data, ii, j, k); let c = get(data, i, jj, k); let d = get(data, ii, jj, k); const x = lerp(lerp(a, b, u), lerp(c, d, u), v); a = get(data, i, j, kk); b = get(data, ii, j, kk); c = get(data, i, jj, kk); d = get(data, ii, jj, kk); const y = lerp(lerp(a, b, u), lerp(c, d, u), v); const value = lerp(x, y, w); if (transform === 'relative') { return (value - stats.mean) / stats.sigma; } else { return value; } }; } Grid.makeGetTrilinearlyInterpolated = makeGetTrilinearlyInterpolated; })(Grid || (Grid = {})); export { Grid };