UNPKG

molstar

Version:

A comprehensive macromolecular library.

619 lines (618 loc) 29.3 kB
/** * Copyright (c) 2017-2024 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author Alexander Rose <alexander.rose@weirdbyte.de> * @author David Sehnal <david.sehnal@gmail.com> */ import { BitFlags } from '../../../mol-util/bit-flags'; import { SaccharideCompIdMap } from '../structure/carbohydrates/constants'; import { SetUtils } from '../../../mol-util/set'; import { LipidNames } from './types/lipids'; import { IonNames } from './types/ions'; const _esCache = (function () { const cache = Object.create(null); const letters = []; for (let i = 'A'.charCodeAt(0); i <= 'Z'.charCodeAt(0); i++) letters[letters.length] = String.fromCharCode(i); for (let i = 'a'.charCodeAt(0); i <= 'z'.charCodeAt(0); i++) letters[letters.length] = String.fromCharCode(i); for (let i = '0'.charCodeAt(0); i <= '9'.charCodeAt(0); i++) letters[letters.length] = String.fromCharCode(i); for (const k of letters) { cache[k] = k.toUpperCase(); for (const l of letters) { cache[k + l] = (k + l).toUpperCase(); for (const m of letters) { cache[k + l + m] = (k + l + m).toUpperCase(); } } } return cache; }()); export function ElementSymbol(s) { return _esCache[s] || s.toUpperCase(); } const _elementByAtomicNumber = new Map([[1, 'H'], [2, 'He'], [3, 'Li'], [4, 'Be'], [5, 'B'], [6, 'C'], [7, 'N'], [8, 'O'], [9, 'F'], [10, 'Ne'], [11, 'Na'], [12, 'Mg'], [13, 'Al'], [14, 'Si'], [15, 'P'], [16, 'S'], [17, 'Cl'], [18, 'Ar'], [19, 'K'], [20, 'Ca'], [21, 'Sc'], [22, 'Ti'], [23, 'V'], [24, 'Cr'], [25, 'Mn'], [26, 'Fe'], [27, 'Co'], [28, 'Ni'], [29, 'Cu'], [30, 'Zn'], [31, 'Ga'], [32, 'Ge'], [33, 'As'], [34, 'Se'], [35, 'Br'], [36, 'Kr'], [37, 'Rb'], [38, 'Sr'], [39, 'Y'], [40, 'Zr'], [41, 'Nb'], [42, 'Mo'], [43, 'Tc'], [44, 'Ru'], [45, 'Rh'], [46, 'Pd'], [47, 'Ag'], [48, 'Cd'], [49, 'In'], [50, 'Sn'], [51, 'Sb'], [52, 'Te'], [53, 'I'], [54, 'Xe'], [55, 'Cs'], [56, 'Ba'], [57, 'La'], [58, 'Ce'], [59, 'Pr'], [60, 'Nd'], [61, 'Pm'], [62, 'Sm'], [63, 'Eu'], [64, 'Gd'], [65, 'Tb'], [66, 'Dy'], [67, 'Ho'], [68, 'Er'], [69, 'Tm'], [70, 'Yb'], [71, 'Lu'], [72, 'Hf'], [73, 'Ta'], [74, 'W'], [75, 'Re'], [76, 'Os'], [77, 'Ir'], [78, 'Pt'], [79, 'Au'], [80, 'Hg'], [81, 'Tl'], [82, 'Pb'], [83, 'Bi'], [84, 'Po'], [85, 'At'], [86, 'Rn'], [87, 'Fr'], [88, 'Ra'], [89, 'Ac'], [90, 'Th'], [91, 'Pa'], [92, 'U'], [93, 'Np'], [94, 'Pu'], [95, 'Am'], [96, 'Cm'], [97, 'Bk'], [98, 'Cf'], [99, 'Es'], [100, 'Fm'], [101, 'Md'], [102, 'No'], [103, 'Lr'], [104, 'Rf'], [105, 'Db'], [106, 'Sg'], [107, 'Bh'], [108, 'Hs'], [109, 'Mt'], [110, 'Ds'], [111, 'Rg'], [112, 'Cn'], [113, 'Uut'], [114, 'Fl'], [115, 'Uup'], [116, 'Lv'], [117, 'Uus'], [118, 'Uuo']] .map(e => [e[0], ElementSymbol(e[1])])); export function getElementFromAtomicNumber(n) { if (_elementByAtomicNumber.has(n)) return _elementByAtomicNumber.get(n); return ElementSymbol('H'); } /** Entity types as defined in the mmCIF dictionary */ export var EntityType; (function (EntityType) { EntityType[EntityType["unknown"] = 0] = "unknown"; EntityType[EntityType["polymer"] = 1] = "polymer"; EntityType[EntityType["non-polymer"] = 2] = "non-polymer"; EntityType[EntityType["macrolide"] = 3] = "macrolide"; EntityType[EntityType["water"] = 4] = "water"; EntityType[EntityType["branched"] = 5] = "branched"; })(EntityType || (EntityType = {})); export const PolymerTypeAtomRoleId = { [0 /* PolymerType.NA */]: { trace: new Set(), directionFrom: new Set(), directionTo: new Set(), backboneStart: new Set(), backboneEnd: new Set(), coarseBackbone: new Set() }, [1 /* PolymerType.Protein */]: { trace: new Set(['CA']), directionFrom: new Set(['C']), directionTo: new Set(['O', 'OC1', 'O1', 'OX1', 'OXT', 'OT1']), backboneStart: new Set(['N']), backboneEnd: new Set(['C']), // CA1 is used e.g. in GFP chromophores // BB, BAS are often used for coarse grained models coarseBackbone: new Set(['CA', 'CA1', 'BB', 'BAS']) }, [2 /* PolymerType.GammaProtein */]: { trace: new Set(['CA']), directionFrom: new Set(['C']), directionTo: new Set(['O']), backboneStart: new Set(['N']), backboneEnd: new Set(['CD']), coarseBackbone: new Set(['CA']) }, [3 /* PolymerType.BetaProtein */]: { trace: new Set(['CA']), directionFrom: new Set(['C']), directionTo: new Set(['O']), backboneStart: new Set(['N']), backboneEnd: new Set(['CG']), coarseBackbone: new Set(['CA']) }, [4 /* PolymerType.RNA */]: { trace: new Set(['O3\'', 'O3*']), directionFrom: new Set(['C4\'', 'C4*']), directionTo: new Set(['C3\'', 'C3*']), backboneStart: new Set(['P']), backboneEnd: new Set(['O3\'', 'O3*']), coarseBackbone: new Set(['P']) }, [5 /* PolymerType.DNA */]: { trace: new Set(['O3\'', 'O3*']), directionFrom: new Set(['C3\'', 'C3*']), directionTo: new Set(['C1\'', 'C1*']), backboneStart: new Set(['P']), backboneEnd: new Set(['O3\'', 'O3*']), coarseBackbone: new Set(['P']) }, [6 /* PolymerType.PNA */]: { trace: new Set(['N4\'', 'N4*']), directionFrom: new Set(['N4\'', 'N4*']), directionTo: new Set(['C7\'', 'C7*']), backboneStart: new Set(['N1\'', 'N1*']), backboneEnd: new Set(['C\'', 'C*']), coarseBackbone: new Set(['P']) } }; export const ProteinBackboneAtoms = new Set([ 'CA', 'C', 'N', 'O', 'O1', 'O2', 'OC1', 'OC2', 'OT1', 'OT2', 'OX1', 'OXT', 'H', 'H1', 'H2', 'H3', 'HA', 'HN', 'HXT', 'BB' ]); export const NucleicBackboneAtoms = new Set([ 'P', 'OP1', 'OP2', 'HOP2', 'HOP3', 'O2\'', 'O3\'', 'O4\'', 'O5\'', 'C1\'', 'C2\'', 'C3\'', 'C4\'', 'C5\'', 'H1\'', 'H2\'', 'H2\'\'', 'HO2\'', 'H3\'', 'H4\'', 'H5\'', 'H5\'\'', 'HO3\'', 'HO5\'', 'O2*', 'O3*', 'O4*', 'O5*', 'C1*', 'C2*', 'C3*', 'C4*', 'C5*' ]); /** Chemical component type names for D-linked protein */ export const DProteinComponentTypeNames = new Set([ 'd-peptide linking', 'd-peptide nh3 amino terminus', 'd-peptide cooh carboxy terminus', 'd-gamma-peptide, c-delta linking', 'd-beta-peptide, c-gamma linking' ]); /** Chemical component type names for L-linked protein */ export const LProteinComponentTypeNames = new Set([ 'l-peptide linking', 'l-peptide nh3 amino terminus', 'l-peptide cooh carboxy terminus', 'l-gamma-peptide, c-delta linking', 'l-beta-peptide, c-gamma linking' ]); /** Chemical component type names for gamma protein, overlaps with D/L-linked */ export const GammaProteinComponentTypeNames = new Set([ 'd-gamma-peptide, c-delta linking', 'l-gamma-peptide, c-delta linking' ]); /** Chemical component type names for beta protein, overlaps with D/L-linked */ export const BetaProteinComponentTypeNames = new Set([ 'd-beta-peptide, c-gamma linking', 'l-beta-peptide, c-gamma linking' ]); /** Chemical component type names for protein termini, overlaps with D/L-linked */ export const ProteinTerminusComponentTypeNames = new Set([ 'd-peptide nh3 amino terminus', 'd-peptide cooh carboxy terminus', 'l-peptide nh3 amino terminus', 'l-peptide cooh carboxy terminus' ]); /** Chemical component type names for peptide-like protein */ export const OtherProteinComponentTypeNames = new Set([ 'peptide linking', 'peptide-like', ]); /** Chemical component type names for protein */ export const ProteinComponentTypeNames = SetUtils.unionMany(DProteinComponentTypeNames, LProteinComponentTypeNames, OtherProteinComponentTypeNames); /** Chemical component type names for DNA */ export const DNAComponentTypeNames = new Set([ 'dna linking', 'l-dna linking', 'dna oh 5 prime terminus', 'dna oh 3 prime terminus', ]); /** Chemical component type names for RNA */ export const RNAComponentTypeNames = new Set([ 'rna linking', 'l-rna linking', 'rna oh 5 prime terminus', 'rna oh 3 prime terminus', ]); /** Chemical component type names for saccharide */ export const SaccharideComponentTypeNames = SetUtils.unionMany(new Set([ 'd-saccharide, beta linking', 'l-saccharide, beta linking', 'd-saccharide, alpha linking', 'l-saccharide, alpha linking', 'l-saccharide', 'd-saccharide', 'saccharide', ]), // deprecated in the mmCIF dictionary, kept for backward compatibility new Set([ 'd-saccharide 1,4 and 1,4 linking', 'l-saccharide 1,4 and 1,4 linking', 'd-saccharide 1,4 and 1,6 linking', 'l-saccharide 1,4 and 1,6 linking' ])); /** Chemical component type names for other */ export const OtherComponentTypeNames = new Set([ 'non-polymer', 'other' ]); /** Chemical component type names for ion (extension to mmcif) */ export const IonComponentTypeNames = new Set([ 'ion' ]); /** Chemical component type names for lipid (extension to mmcif) */ export const LipidComponentTypeNames = new Set([ 'lipid' ]); /** Common names for water molecules */ export const WaterNames = new Set([ 'SOL', 'WAT', 'HOH', 'H2O', 'W', 'DOD', 'D3O', 'TIP', 'TIP3', 'TIP4', 'SPC' ]); export const AminoAcidNamesL = new Set([ 'HIS', 'ARG', 'LYS', 'ILE', 'PHE', 'LEU', 'TRP', 'ALA', 'MET', 'PRO', 'CYS', 'ASN', 'VAL', 'GLY', 'SER', 'GLN', 'TYR', 'ASP', 'GLU', 'THR', 'SEC', 'PYL', 'UNK', // unknown amino acid from CCD 'MSE', 'SEP', 'TPO', 'PTR', 'PCA', 'HYP', // common from CCD // charmm ff 'HSD', 'HSE', 'HSP', 'LSN', 'ASPP', 'GLUP', // amber ff 'HID', 'HIE', 'HIP', 'LYN', 'ASH', 'GLH', ]); export const AminoAcidNamesD = new Set([ 'DAL', // D-ALANINE 'DAR', // D-ARGININE 'DSG', // D-ASPARAGINE 'DAS', // D-ASPARTIC ACID 'DCY', // D-CYSTEINE 'DGL', // D-GLUTAMIC ACID 'DGN', // D-GLUTAMINE 'DHI', // D-HISTIDINE 'DIL', // D-ISOLEUCINE 'DLE', // D-LEUCINE 'DLY', // D-LYSINE 'MED', // D-METHIONINE 'DPN', // D-PHENYLALANINE 'DPR', // D-PROLINE 'DSN', // D-SERINE 'DTH', // D-THREONINE 'DTR', // D-TRYPTOPHAN 'DTY', // D-TYROSINE 'DVA', // D-VALINE 'DNE' // D-NORLEUCINE // ??? // D-SELENOCYSTEINE ]); export const AminoAcidNames = SetUtils.unionMany(AminoAcidNamesL, AminoAcidNamesD); export const CommonProteinCaps = new Set([ 'NME', 'ACE', 'NH2', 'FOR', 'FMT' // not including the following // 'E1H' GFP backbone fragmentation in 2G16 // 'HOA' complexes zinc // 'NEH' ubiquitine linker // 'MOH' part of peptidomimetics ]); export const RnaBaseNames = new Set([ 'A', 'C', 'T', 'G', 'I', 'U', 'N' // unknown RNA base from CCD ]); export const DnaBaseNames = new Set([ 'DA', 'DC', 'DT', 'DG', 'DI', 'DU', 'DN' // unknown DNA base from CCD ]); export const PeptideBaseNames = new Set(['APN', 'CPN', 'TPN', 'GPN']); export const PurineBaseNames = new Set(['A', 'G', 'I', 'DA', 'DG', 'DI', 'APN', 'GPN']); export const PyrimidineBaseNames = new Set(['C', 'T', 'U', 'DC', 'DT', 'DU', 'CPN', 'TPN']); export const BaseNames = SetUtils.unionMany(RnaBaseNames, DnaBaseNames, PeptideBaseNames); export const isPurineBase = (compId) => PurineBaseNames.has(compId.toUpperCase()); export const isPyrimidineBase = (compId) => PyrimidineBaseNames.has(compId.toUpperCase()); export const PolymerNames = SetUtils.unionMany(AminoAcidNames, BaseNames); /** get the molecule type from component type and id */ export function getMoleculeType(compType, compId) { compId = compId.toUpperCase(); if (PeptideBaseNames.has(compId)) { return 8 /* MoleculeType.PNA */; } else if (ProteinComponentTypeNames.has(compType)) { return 5 /* MoleculeType.Protein */; } else if (RNAComponentTypeNames.has(compType)) { return 6 /* MoleculeType.RNA */; } else if (DNAComponentTypeNames.has(compType)) { return 7 /* MoleculeType.DNA */; } else if (SaccharideComponentTypeNames.has(compType)) { return 9 /* MoleculeType.Saccharide */; } else if (WaterNames.has(compId)) { return 2 /* MoleculeType.Water */; } else if (IonNames.has(compId)) { return 3 /* MoleculeType.Ion */; } else if (LipidNames.has(compId)) { return 4 /* MoleculeType.Lipid */; } else if (OtherComponentTypeNames.has(compType)) { if (SaccharideCompIdMap.has(compId)) { // trust our saccharide table more than given 'NON-POLYMER' or 'OTHER' component type return 9 /* MoleculeType.Saccharide */; } else if (AminoAcidNames.has(compId)) { return 5 /* MoleculeType.Protein */; } else if (RnaBaseNames.has(compId)) { return 6 /* MoleculeType.RNA */; } else if (DnaBaseNames.has(compId)) { return 7 /* MoleculeType.DNA */; } else { return 1 /* MoleculeType.Other */; } } else { return 0 /* MoleculeType.Unknown */; } } export function getPolymerType(compType, molType) { if (molType === 5 /* MoleculeType.Protein */) { if (GammaProteinComponentTypeNames.has(compType)) { return 2 /* PolymerType.GammaProtein */; } else if (BetaProteinComponentTypeNames.has(compType)) { return 3 /* PolymerType.BetaProtein */; } else if (ProteinTerminusComponentTypeNames.has(compType)) { return 0 /* PolymerType.NA */; } else { return 1 /* PolymerType.Protein */; } } else if (molType === 6 /* MoleculeType.RNA */) { return 4 /* PolymerType.RNA */; } else if (molType === 7 /* MoleculeType.DNA */) { return 5 /* PolymerType.DNA */; } else if (molType === 8 /* MoleculeType.PNA */) { return 6 /* PolymerType.PNA */; } else { return 0 /* PolymerType.NA */; } } export function getComponentType(compId) { compId = compId.toUpperCase(); if (AminoAcidNames.has(compId)) { return 'peptide linking'; } else if (RnaBaseNames.has(compId)) { return 'rna linking'; } else if (DnaBaseNames.has(compId)) { return 'dna linking'; } else if (SaccharideCompIdMap.has(compId)) { return 'saccharide'; } else { return 'other'; } } export function getDefaultChemicalComponent(compId) { // TODO: this is to make the chem_comp_type property work if chem_comp category is not present. // should we try to set the formula etc better? return { formula: '', formula_weight: 0, id: compId, name: compId, mon_nstd_flag: PolymerNames.has(compId) ? 'y' : 'n', pdbx_synonyms: [], type: getComponentType(compId) }; } export function getEntityType(compId) { compId = compId.toUpperCase(); if (WaterNames.has(compId)) { return 'water'; } else if (PolymerNames.has(compId)) { return 'polymer'; } else if (SaccharideCompIdMap.has(compId)) { return 'branched'; } else { return 'non-polymer'; } } export function getEntitySubtype(compId, compType) { compId = compId.toUpperCase(); if (LProteinComponentTypeNames.has(compType)) { return 'polypeptide(L)'; } else if (DProteinComponentTypeNames.has(compType)) { return 'polypeptide(D)'; } else if (RNAComponentTypeNames.has(compType)) { return 'polyribonucleotide'; } else if (DNAComponentTypeNames.has(compType)) { return 'polydeoxyribonucleotide'; } else if (SaccharideComponentTypeNames.has(compType)) { return 'oligosaccharide'; } else if (SaccharideCompIdMap.has(compId)) { return 'oligosaccharide'; } else if (PeptideBaseNames.has(compId)) { return 'peptide nucleic acid'; } else if (AminoAcidNamesL.has(compId)) { return 'polypeptide(L)'; } else if (AminoAcidNamesD.has(compId)) { return 'polypeptide(D)'; } else if (RnaBaseNames.has(compId)) { return 'polyribonucleotide'; } else if (DnaBaseNames.has(compId)) { return 'polydeoxyribonucleotide'; } else if (IonComponentTypeNames.has(compType) || IonNames.has(compId)) { return 'ion'; } else if (LipidComponentTypeNames.has(compType) || LipidNames.has(compId)) { return 'lipid'; } else if (OtherProteinComponentTypeNames.has(compType)) { return 'peptide-like'; } else { return 'other'; } } export function isPolymer(moleculeType) { return isNucleic(moleculeType) || isProtein(moleculeType); } export function isNucleic(moleculeType) { return moleculeType === 7 /* MoleculeType.DNA */ || moleculeType === 6 /* MoleculeType.RNA */ || moleculeType === 8 /* MoleculeType.PNA */; } export function isProtein(moleculeType) { return moleculeType === 5 /* MoleculeType.Protein */; } export var SecondaryStructureType; (function (SecondaryStructureType) { SecondaryStructureType.is = BitFlags.has; SecondaryStructureType.create = BitFlags.create; SecondaryStructureType.SecondaryStructureMmcif = { helx_lh_27_p: 2 /* Flag.Helix */ | 32 /* Flag.LeftHanded */ | 1024 /* Flag.Helix27 */, // left-handed 2-7 helix (protein) helx_lh_3t_p: 2 /* Flag.Helix */ | 32 /* Flag.LeftHanded */ | 2048 /* Flag.Helix3Ten */, // left-handed 3-10 helix (protein) helx_lh_al_p: 2 /* Flag.Helix */ | 32 /* Flag.LeftHanded */ | 4096 /* Flag.HelixAlpha */, // left-handed alpha helix (protein) helx_lh_a_n: 1 /* Flag.DoubleHelix */ | 32 /* Flag.LeftHanded */ | 524288 /* Flag.DoubleHelixA */, // left-handed A helix (nucleic acid) helx_lh_b_n: 1 /* Flag.DoubleHelix */ | 32 /* Flag.LeftHanded */ | 1048576 /* Flag.DoubleHelixB */, // left-handed B helix (nucleic acid) helx_lh_ga_p: 2 /* Flag.Helix */ | 32 /* Flag.LeftHanded */ | 8192 /* Flag.HelixGamma */, // left-handed gamma helix (protein) helx_lh_n: 1 /* Flag.DoubleHelix */ | 32 /* Flag.LeftHanded */, // left-handed helix with type not specified (nucleic acid) helx_lh_om_p: 2 /* Flag.Helix */ | 32 /* Flag.LeftHanded */ | 16384 /* Flag.HelixOmega */, // left-handed omega helix (protein) helx_lh_ot_n: 1 /* Flag.DoubleHelix */ | 32 /* Flag.LeftHanded */ | 131072 /* Flag.DoubleHelixOther */, // left-handed helix with type that does not conform to an accepted category (nucleic acid) helx_lh_ot_p: 2 /* Flag.Helix */ | 32 /* Flag.LeftHanded */ | 512 /* Flag.HelixOther */, // left-handed helix with type that does not conform to an accepted category (protein) helx_lh_p: 2 /* Flag.Helix */ | 32 /* Flag.LeftHanded */, // left-handed helix with type not specified (protein) helx_lh_pi_p: 2 /* Flag.Helix */ | 32 /* Flag.LeftHanded */ | 32768 /* Flag.HelixPi */, // left-handed pi helix (protein) helx_lh_pp_p: 2 /* Flag.Helix */ | 32 /* Flag.LeftHanded */ | 65536 /* Flag.HelixPolyproline */, // left-handed polyproline helix (protein) helx_lh_z_n: 1 /* Flag.DoubleHelix */ | 32 /* Flag.LeftHanded */ | 262144 /* Flag.DoubleHelixZ */, // left-handed Z helix (nucleic acid) helx_n: 1 /* Flag.DoubleHelix */, // helix with handedness and type not specified (nucleic acid) helx_ot_n: 1 /* Flag.DoubleHelix */, // helix with handedness and type that do not conform to an accepted category (nucleic acid) helx_ot_p: 2 /* Flag.Helix */, // helix with handedness and type that do not conform to an accepted category (protein) helx_p: 2 /* Flag.Helix */, // helix with handedness and type not specified (protein) helx_rh_27_p: 2 /* Flag.Helix */ | 64 /* Flag.RightHanded */ | 1024 /* Flag.Helix27 */, // right-handed 2-7 helix (protein) helx_rh_3t_p: 2 /* Flag.Helix */ | 64 /* Flag.RightHanded */ | 2048 /* Flag.Helix3Ten */, // right-handed 3-10 helix (protein) helx_rh_al_p: 2 /* Flag.Helix */ | 64 /* Flag.RightHanded */ | 4096 /* Flag.HelixAlpha */, // right-handed alpha helix (protein) helx_rh_a_n: 1 /* Flag.DoubleHelix */ | 64 /* Flag.RightHanded */ | 524288 /* Flag.DoubleHelixA */, // right-handed A helix (nucleic acid) helx_rh_b_n: 1 /* Flag.DoubleHelix */ | 64 /* Flag.RightHanded */ | 1048576 /* Flag.DoubleHelixB */, // right-handed B helix (nucleic acid) helx_rh_ga_p: 2 /* Flag.Helix */ | 64 /* Flag.RightHanded */ | 8192 /* Flag.HelixGamma */, // right-handed gamma helix (protein) helx_rh_n: 1 /* Flag.DoubleHelix */ | 64 /* Flag.RightHanded */, // right-handed helix with type not specified (nucleic acid) helx_rh_om_p: 2 /* Flag.Helix */ | 64 /* Flag.RightHanded */ | 16384 /* Flag.HelixOmega */, // right-handed omega helix (protein) helx_rh_ot_n: 1 /* Flag.DoubleHelix */ | 64 /* Flag.RightHanded */ | 131072 /* Flag.DoubleHelixOther */, // right-handed helix with type that does not conform to an accepted category (rhcleic acid) helx_rh_ot_p: 2 /* Flag.Helix */ | 64 /* Flag.RightHanded */ | 512 /* Flag.HelixOther */, // right-handed helix with type that does not conform to an accepted category (protein) helx_rh_p: 2 /* Flag.Helix */ | 64 /* Flag.RightHanded */, // right-handed helix with type not specified (protein) helx_rh_pi_p: 2 /* Flag.Helix */ | 64 /* Flag.RightHanded */ | 32768 /* Flag.HelixPi */, // right-handed pi helix (protein) helx_rh_pp_p: 2 /* Flag.Helix */ | 64 /* Flag.RightHanded */ | 65536 /* Flag.HelixPolyproline */, // right-handed polyproline helix (protein) helx_rh_z_n: 1 /* Flag.DoubleHelix */ | 64 /* Flag.RightHanded */ | 262144 /* Flag.DoubleHelixZ */, // right-handed Z helix (nucleic acid) strn: 4 /* Flag.Beta */ | 4194304 /* Flag.BetaStrand */, // beta strand (protein) turn_ot_p: 16 /* Flag.Turn */ | 33554432 /* Flag.TurnOther */, // turn with type that does not conform to an accepted category (protein) turn_p: 16 /* Flag.Turn */, // turn with type not specified (protein) turn_ty1p_p: 16 /* Flag.Turn */ | 256 /* Flag.InverseTurn */ | 67108864 /* Flag.Turn1 */, // type I prime turn (protein) turn_ty1_p: 16 /* Flag.Turn */ | 128 /* Flag.ClassicTurn */ | 67108864 /* Flag.Turn1 */, // type I turn (protein) turn_ty2p_p: 16 /* Flag.Turn */ | 256 /* Flag.InverseTurn */ | 134217728 /* Flag.Turn2 */, // type II prime turn (protein) turn_ty2_p: 16 /* Flag.Turn */ | 128 /* Flag.ClassicTurn */ | 134217728 /* Flag.Turn2 */, // type II turn (protein) turn_ty3p_p: 16 /* Flag.Turn */ | 256 /* Flag.InverseTurn */ | 268435456 /* Flag.Turn3 */, // type III prime turn (protein) turn_ty3_p: 16 /* Flag.Turn */ | 128 /* Flag.ClassicTurn */ | 268435456 /* Flag.Turn3 */, // type III turn (protein) bend: 8 /* Flag.Bend */, // region with high backbone curvature without specific hydrogen bonding, a bend at residue i occurs when the angle between C$\_alpha(i)-C_\alpha(i-2) and C_\alpha(i+2) - C_\alpha(i)$ is greater than 70 degrees (protein) other: 0 /* Flag.None */, // secondary structure type that does not conform to an accepted category, random coil (protein) }; SecondaryStructureType.SecondaryStructurePdb = { 1: 2 /* Flag.Helix */ | 64 /* Flag.RightHanded */ | 4096 /* Flag.HelixAlpha */, // Right-handed alpha (default) 2: 2 /* Flag.Helix */ | 64 /* Flag.RightHanded */ | 16384 /* Flag.HelixOmega */, // Right-handed omega 3: 2 /* Flag.Helix */ | 64 /* Flag.RightHanded */ | 32768 /* Flag.HelixPi */, // Right-handed pi 4: 2 /* Flag.Helix */ | 64 /* Flag.RightHanded */ | 8192 /* Flag.HelixGamma */, // Right-handed gamma 5: 2 /* Flag.Helix */ | 64 /* Flag.RightHanded */ | 2048 /* Flag.Helix3Ten */, // Right-handed 310 6: 2 /* Flag.Helix */ | 32 /* Flag.LeftHanded */ | 4096 /* Flag.HelixAlpha */, // Left-handed alpha 7: 2 /* Flag.Helix */ | 32 /* Flag.LeftHanded */ | 16384 /* Flag.HelixOmega */, // Left-handed omega 8: 2 /* Flag.Helix */ | 32 /* Flag.LeftHanded */ | 8192 /* Flag.HelixGamma */, // Left-handed gamma 9: 2 /* Flag.Helix */ | 1024 /* Flag.Helix27 */, // 27 ribbon/helix 10: 2 /* Flag.Helix */ | 65536 /* Flag.HelixPolyproline */, // Polyproline }; SecondaryStructureType.SecondaryStructureStride = { H: 2 /* Flag.Helix */ | 4096 /* Flag.HelixAlpha */, // Alpha helix G: 2 /* Flag.Helix */ | 2048 /* Flag.Helix3Ten */, // 3-10 helix I: 2 /* Flag.Helix */ | 32768 /* Flag.HelixPi */, // PI-helix E: 4 /* Flag.Beta */ | 8388608 /* Flag.BetaSheet */, // Extended conformation B: 4 /* Flag.Beta */ | 4194304 /* Flag.BetaStrand */, // Isolated bridge T: 16 /* Flag.Turn */, // Turn C: 536870912 /* Flag.NA */, // Coil (none of the above) }; SecondaryStructureType.SecondaryStructureDssp = { H: 2 /* Flag.Helix */ | 4096 /* Flag.HelixAlpha */, // alpha-helix B: 4 /* Flag.Beta */ | 4194304 /* Flag.BetaStrand */, // residue in isolated beta-bridge E: 4 /* Flag.Beta */ | 8388608 /* Flag.BetaSheet */, // extended strand, participates in beta ladder G: 2 /* Flag.Helix */ | 2048 /* Flag.Helix3Ten */, // 3-helix (310 helix) I: 2 /* Flag.Helix */ | 32768 /* Flag.HelixPi */, // 5 helix (pi-helix) T: 16 /* Flag.Turn */, // hydrogen bonded turn S: 8 /* Flag.Bend */, // bend }; })(SecondaryStructureType || (SecondaryStructureType = {})); /** Maximum accessible surface area observed for amino acids. Taken from: http://dx.doi.org/10.1371/journal.pone.0080635 */ export const MaxAsa = { 'ALA': 121.0, 'ARG': 265.0, 'ASN': 187.0, 'ASP': 187.0, 'CYS': 148.0, 'GLU': 214.0, 'GLN': 214.0, 'GLY': 97.0, 'HIS': 216.0, 'ILE': 195.0, 'LEU': 191.0, 'LYS': 230.0, 'MET': 203.0, 'PHE': 228.0, 'PRO': 154.0, 'SER': 143.0, 'THR': 163.0, 'TRP': 264.0, 'TYR': 255.0, 'VAL': 165.0, // charmm ff 'HSD': 216.0, 'HSE': 216.0, 'HSP': 216.0, // amber ff 'HID': 216.0, 'HIE': 216.0, 'HIP': 216.0, 'ASH': 187.0, 'GLH': 214.0, }; export const DefaultMaxAsa = 121.0; export var BondType; (function (BondType) { BondType.is = BitFlags.has; function create(flags) { return BitFlags.create(flags); } BondType.create = create; function isCovalent(flags) { return (flags & 1 /* BondType.Flag.Covalent */) !== 0; } BondType.isCovalent = isCovalent; function isAll(flags) { return flags === Math.pow(2, 6) - 1; } BondType.isAll = isAll; BondType.Names = { 'covalent': 1 /* Flag.Covalent */, 'metal-coordination': 2 /* Flag.MetallicCoordination */, 'hydrogen-bond': 4 /* Flag.HydrogenBond */, 'disulfide': 8 /* Flag.Disulfide */, 'aromatic': 16 /* Flag.Aromatic */, 'computed': 32 /* Flag.Computed */, }; function isName(name) { return name in BondType.Names; } BondType.isName = isName; function fromName(name) { switch (name) { case 'covalent': return 1 /* Flag.Covalent */; case 'metal-coordination': return 2 /* Flag.MetallicCoordination */; case 'hydrogen-bond': return 4 /* Flag.HydrogenBond */; case 'disulfide': return 8 /* Flag.Disulfide */; case 'aromatic': return 16 /* Flag.Aromatic */; case 'computed': return 32 /* Flag.Computed */; } } BondType.fromName = fromName; function fromNames(names) { let f = 0 /* Flag.None */; for (let i = 0, il = names.length; i < il; ++i) { f |= fromName(names[i]); } return f; } BondType.fromNames = fromNames; })(BondType || (BondType = {})); /** * "Experimentally determined hydrophobicity scale for proteins at membrane interfaces" * by Wimely and White (doi:10.1038/nsb1096-842) * http://blanco.biomol.uci.edu/Whole_residue_HFscales.txt * https://www.nature.com/articles/nsb1096-842 */ export const ResidueHydrophobicity = { // AA DGwif DGwoct Oct-IF 'ALA': [0.17, 0.50, 0.33], 'ARG': [0.81, 1.81, 1.00], 'ASN': [0.42, 0.85, 0.43], 'ASP': [1.23, 3.64, 2.41], 'ASH': [-0.07, 0.43, 0.50], 'CYS': [-0.24, -0.02, 0.22], 'GLN': [0.58, 0.77, 0.19], 'GLU': [2.02, 3.63, 1.61], 'GLH': [-0.01, 0.11, 0.12], 'GLY': [0.01, 1.15, 1.14], // "His+": [ 0.96, 2.33, 1.37 ], 'HIS': [0.17, 0.11, -0.06], 'ILE': [-0.31, -1.12, -0.81], 'LEU': [-0.56, -1.25, -0.69], 'LYS': [0.99, 2.80, 1.81], 'MET': [-0.23, -0.67, -0.44], 'PHE': [-1.13, -1.71, -0.58], 'PRO': [0.45, 0.14, -0.31], 'SER': [0.13, 0.46, 0.33], 'THR': [0.14, 0.25, 0.11], 'TRP': [-1.85, -2.09, -0.24], 'TYR': [-0.94, -0.71, 0.23], 'VAL': [0.07, -0.46, -0.53], // charmm ff 'HSD': [0.17, 0.11, -0.06], 'HSE': [0.17, 0.11, -0.06], 'HSP': [0.96, 2.33, 1.37], // amber ff 'HID': [0.17, 0.11, -0.06], 'HIE': [0.17, 0.11, -0.06], 'HIP': [0.96, 2.33, 1.37], }; export const DefaultResidueHydrophobicity = [0.00, 0.00, 0.00];