molstar
Version:
A comprehensive macromolecular library.
256 lines (255 loc) • 8.57 kB
JavaScript
/**
* Copyright (c) 2019 mol* contributors, licensed under MIT, See LICENSE file for more info.
*
* @author David Sehnal <david.sehnal@gmail.com>
*/
import { Matrix } from './matrix';
export var EVD;
(function (EVD) {
function createCache(size) {
return {
size,
matrix: Matrix.create(size, size),
eigenValues: new Float64Array(size),
D: new Float64Array(size),
E: new Float64Array(size)
};
}
EVD.createCache = createCache;
/**
* Computes EVD and stores the result in the cache.
*/
function compute(cache) {
symmetricEigenDecomp(cache.size, cache.matrix.data, cache.eigenValues, cache.D, cache.E);
}
EVD.compute = compute;
})(EVD || (EVD = {}));
// The EVD code has been adapted from Math.NET, MIT license, Copyright (c) 2002-2015 Math.NET
//
// THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
function symmetricEigenDecomp(order, matrixEv, vectorEv, d, e) {
for (let i = 0; i < order; i++) {
e[i] = 0.0;
}
const om1 = order - 1;
for (let i = 0; i < order; i++) {
d[i] = matrixEv[i * order + om1];
}
symmetricTridiagonalize(matrixEv, d, e, order);
symmetricDiagonalize(matrixEv, d, e, order);
for (let i = 0; i < order; i++) {
vectorEv[i] = d[i];
}
}
function symmetricTridiagonalize(a, d, e, order) {
// Householder reduction to tridiagonal form.
for (let i = order - 1; i > 0; i--) {
// Scale to avoid under/overflow.
let scale = 0.0;
let h = 0.0;
for (let k = 0; k < i; k++) {
scale = scale + Math.abs(d[k]);
}
if (scale === 0.0) {
e[i] = d[i - 1];
for (let j = 0; j < i; j++) {
d[j] = a[(j * order) + i - 1];
a[(j * order) + i] = 0.0;
a[(i * order) + j] = 0.0;
}
}
else {
// Generate Householder vector.
for (let k = 0; k < i; k++) {
d[k] /= scale;
h += d[k] * d[k];
}
let f = d[i - 1];
let g = Math.sqrt(h);
if (f > 0) {
g = -g;
}
e[i] = scale * g;
h = h - (f * g);
d[i - 1] = f - g;
for (let j = 0; j < i; j++) {
e[j] = 0.0;
}
// Apply similarity transformation to remaining columns.
for (let j = 0; j < i; j++) {
f = d[j];
a[(i * order) + j] = f;
g = e[j] + (a[(j * order) + j] * f);
for (let k = j + 1; k <= i - 1; k++) {
g += a[(j * order) + k] * d[k];
e[k] += a[(j * order) + k] * f;
}
e[j] = g;
}
f = 0.0;
for (let j = 0; j < i; j++) {
e[j] /= h;
f += e[j] * d[j];
}
const hh = f / (h + h);
for (let j = 0; j < i; j++) {
e[j] -= hh * d[j];
}
for (let j = 0; j < i; j++) {
f = d[j];
g = e[j];
for (let k = j; k <= i - 1; k++) {
a[(j * order) + k] -= (f * e[k]) + (g * d[k]);
}
d[j] = a[(j * order) + i - 1];
a[(j * order) + i] = 0.0;
}
}
d[i] = h;
}
// Accumulate transformations.
for (let i = 0; i < order - 1; i++) {
a[(i * order) + order - 1] = a[(i * order) + i];
a[(i * order) + i] = 1.0;
const h = d[i + 1];
if (h !== 0.0) {
for (let k = 0; k <= i; k++) {
d[k] = a[((i + 1) * order) + k] / h;
}
for (let j = 0; j <= i; j++) {
let g = 0.0;
for (let k = 0; k <= i; k++) {
g += a[((i + 1) * order) + k] * a[(j * order) + k];
}
for (let k = 0; k <= i; k++) {
a[(j * order) + k] -= g * d[k];
}
}
}
for (let k = 0; k <= i; k++) {
a[((i + 1) * order) + k] = 0.0;
}
}
for (let j = 0; j < order; j++) {
d[j] = a[(j * order) + order - 1];
a[(j * order) + order - 1] = 0.0;
}
a[(order * order) - 1] = 1.0;
e[0] = 0.0;
}
function symmetricDiagonalize(a, d, e, order) {
const maxiter = 1000;
for (let i = 1; i < order; i++) {
e[i - 1] = e[i];
}
e[order - 1] = 0.0;
let f = 0.0;
let tst1 = 0.0;
const eps = Math.pow(2, -53); // DoubleWidth = 53
for (let l = 0; l < order; l++) {
// Find small subdiagonal element
tst1 = Math.max(tst1, Math.abs(d[l]) + Math.abs(e[l]));
let m = l;
while (m < order) {
if (Math.abs(e[m]) <= eps * tst1) {
break;
}
m++;
}
// If m == l, d[l] is an eigenvalue,
// otherwise, iterate.
if (m > l) {
let iter = 0;
do {
iter = iter + 1; // (Could check iteration count here.)
// Compute implicit shift
let g = d[l];
let p = (d[l + 1] - g) / (2.0 * e[l]);
let r = hypotenuse(p, 1.0);
if (p < 0) {
r = -r;
}
d[l] = e[l] / (p + r);
d[l + 1] = e[l] * (p + r);
const dl1 = d[l + 1];
let h = g - d[l];
for (let i = l + 2; i < order; i++) {
d[i] -= h;
}
f = f + h;
// Implicit QL transformation.
p = d[m];
let c = 1.0;
let c2 = c;
let c3 = c;
const el1 = e[l + 1];
let s = 0.0;
let s2 = 0.0;
for (let i = m - 1; i >= l; i--) {
c3 = c2;
c2 = c;
s2 = s;
g = c * e[i];
h = c * p;
r = hypotenuse(p, e[i]);
e[i + 1] = s * r;
s = e[i] / r;
c = p / r;
p = (c * d[i]) - (s * g);
d[i + 1] = h + (s * ((c * g) + (s * d[i])));
// Accumulate transformation.
for (let k = 0; k < order; k++) {
h = a[((i + 1) * order) + k];
a[((i + 1) * order) + k] = (s * a[(i * order) + k]) + (c * h);
a[(i * order) + k] = (c * a[(i * order) + k]) - (s * h);
}
}
p = (-s) * s2 * c3 * el1 * e[l] / dl1;
e[l] = s * p;
d[l] = c * p;
// Check for convergence. If too many iterations have been performed,
// throw exception that Convergence Failed
if (iter >= maxiter) {
throw new Error('SVD: Not converging.');
}
} while (Math.abs(e[l]) > eps * tst1);
}
d[l] = d[l] + f;
e[l] = 0.0;
}
// Sort eigenvalues and corresponding vectors.
for (let i = 0; i < order - 1; i++) {
let k = i;
let p = d[i];
for (let j = i + 1; j < order; j++) {
if (d[j] < p) {
k = j;
p = d[j];
}
}
if (k !== i) {
d[k] = d[i];
d[i] = p;
for (let j = 0; j < order; j++) {
p = a[(i * order) + j];
a[(i * order) + j] = a[(k * order) + j];
a[(k * order) + j] = p;
}
}
}
}
function hypotenuse(a, b) {
if (Math.abs(a) > Math.abs(b)) {
const r = b / a;
return Math.abs(a) * Math.sqrt(1 + (r * r));
}
if (b !== 0.0) {
const r = a / b;
return Math.abs(b) * Math.sqrt(1 + (r * r));
}
return 0.0;
}