molstar
Version:
A comprehensive macromolecular library.
184 lines (183 loc) • 6.57 kB
JavaScript
/**
* Copyright (c) 2020 mol* contributors, licensed under MIT, See LICENSE file for more info.
*
* @author Alexander Rose <alexander.rose@weirdbyte.de>
*
* mostly adapted from https://gist.github.com/imbcmdth/6338194
* which is ported from https://code.google.com/archive/p/fastapprox/ (BSD licensed)
*/
const _a_fastPow2 = new ArrayBuffer(4);
const _i_fastPow2 = new Int32Array(_a_fastPow2);
const _f_fastPow2 = new Float32Array(_a_fastPow2);
export function fastPow2(v) {
const offset = (v < 0) ? 1 : 0;
const clipNumber = (v < -126) ? -126 : v;
const w = clipNumber | 0;
const z = clipNumber - w + offset;
_i_fastPow2[0] = ((1 << 23) * (clipNumber + 121.2740575 + 27.7280233 / (4.84252568 - z) - 1.49012907 * z));
return _f_fastPow2[0];
}
const _a_fasterPow2 = new ArrayBuffer(4);
const _i_fasterPow2 = new Int32Array(_a_fasterPow2);
const _f_fasterPow2 = new Float32Array(_a_fasterPow2);
export function fasterPow2(v) {
const clipNumber = (v < -126) ? -126 : v;
_i_fasterPow2[0] = ((1 << 23) * (clipNumber + 126.94269504));
return _f_fasterPow2[0];
}
export function fastExp(v) {
return fastPow2(1.442695040 * v);
}
export function fasterExp(v) {
return fasterPow2(1.442695040 * v);
}
const _a_fastLog2 = new ArrayBuffer(8);
const _i_fastLog2 = new Int32Array(_a_fastLog2);
const _f_fastLog2 = new Float32Array(_a_fastLog2);
export function fastLog2(v) {
_f_fastLog2[0] = v;
_i_fastLog2[1] = (_i_fastLog2[0] & 0x007FFFFF) | 0x3f000000;
const t = _i_fastLog2[0] * 1.1920928955078125e-7;
return t - 124.22551499 - 1.498030302 * _f_fastLog2[1] - 1.72587999 / (0.3520887068 + _f_fastLog2[1]);
}
;
const _a_fasterLog2 = new ArrayBuffer(4);
const _i_fasterLog2 = new Int32Array(_a_fasterLog2);
const _f_fasterLog2 = new Float32Array(_a_fasterLog2);
export function fasterLog2(v) {
_f_fasterLog2[0] = v;
const t = _i_fasterLog2[0] * 1.1920928955078125e-7;
return t - 126.94269504;
}
export function fastLog(v) {
return 0.6931471805599453 * fastLog2(v);
}
export function fasterLog(v) {
return 0.6931471805599453 * fasterLog2(v);
}
export function fastLog10(v) {
return 0.30102999566398114 * fastLog2(v);
}
export function fasterLog10(v) {
return 0.30102999566398114 * fasterLog2(v);
}
export function fastSinh(v) {
return 0.5 * (fastExp(v) - fastExp(-v));
}
export function fasterSinh(v) {
return 0.5 * (fasterExp(v) - fasterExp(-v));
}
export function fastCosh(v) {
return 0.5 * (fastExp(v) + fastExp(-v));
}
export function fasterCosh(v) {
return 0.5 * (fasterExp(v) + fasterExp(-v));
}
export function fastTanh(v) {
return -1.0 + 2.0 / (1.0 + fastExp(-2.0 * v));
}
export function fasterTanh(v) {
return -1.0 + 2.0 / (1.0 + fasterExp(-2.0 * v));
}
const halfPi = Math.PI / 2;
const twoPi = 2 * Math.PI;
const invTwoPi = 1 / (2 * Math.PI);
const twoOverPi = 2 / Math.PI;
const fourOverPi = 4 / Math.PI;
const fourOverPiSq = 4 / (Math.PI * Math.PI);
const halfPiMinusTwoPi = Math.PI / 2 - 2 * Math.PI;
const _q_fastHalfSin = 0.78444488374548933;
const _a_fastHalfSin = new ArrayBuffer(16);
const _i_fastHalfSin = new Int32Array(_a_fastHalfSin);
const _f_fastHalfSin = new Float32Array(_a_fastHalfSin);
function fastHalfSin(v) {
_f_fastHalfSin[0] = 0.20363937680730309;
_f_fastHalfSin[1] = 0.015124940802184233;
_f_fastHalfSin[2] = -0.0032225901625579573;
_f_fastHalfSin[3] = v;
const sign = _i_fastHalfSin[3] & 0x80000000;
_i_fastHalfSin[3] = _i_fastHalfSin[3] & 0x7FFFFFFF;
const qpprox = fourOverPi * v - fourOverPiSq * v * _f_fastHalfSin[3];
const qpproxsq = qpprox * qpprox;
_i_fastHalfSin[0] |= sign;
_i_fastHalfSin[1] |= sign;
_i_fastHalfSin[2] ^= sign;
return _q_fastHalfSin * qpprox + qpproxsq * (_f_fastHalfSin[0] + qpproxsq * (_f_fastHalfSin[1] + qpproxsq * _f_fastHalfSin[2]));
}
const _q_fasterHalfSin = 0.78444488374548933;
const _a_fasterHalfSin = new ArrayBuffer(8);
const _i_fasterHalfSin = new Int32Array(_a_fasterHalfSin);
const _f_fasterHalfSin = new Float32Array(_a_fasterHalfSin);
function fasterHalfSin(v) {
_f_fasterHalfSin[0] = 0.22308510060189463;
_f_fasterHalfSin[1] = v;
const sign = _i_fasterHalfSin[1] & 0x80000000;
_i_fasterHalfSin[1] &= 0x7FFFFFFF;
const qpprox = fourOverPi * v - fourOverPiSq * v * _f_fasterHalfSin[1];
_i_fasterHalfSin[0] |= sign;
return qpprox * (_q_fasterHalfSin + _f_fasterHalfSin[0] * qpprox);
}
export function fastSin(v) {
const k = (v * invTwoPi) | 0;
const half = (v < 0) ? -0.5 : 0.5;
return fastHalfSin((half + k) * twoPi - v);
}
export function fasterSin(v) {
const k = (v * invTwoPi) | 0;
const half = (v < 0) ? -0.5 : 0.5;
return fasterHalfSin((half + k) * twoPi - v);
}
export function fastCos(v) {
return fastSin(v + halfPi);
}
export function fasterCos(v) {
return fasterSin(v + halfPi);
}
function fastHalfCos(v) {
const offset = (v > halfPi) ? halfPiMinusTwoPi : halfPi;
return fastHalfSin(v + offset);
}
const _p_fasterHalfCos = 0.54641335845679634;
const _a_fasterHalfCos = new ArrayBuffer(4);
const _i_fasterHalfCos = new Int32Array(_a_fasterHalfCos);
const _f_fasterHalfCos = new Float32Array(_a_fasterHalfCos);
function fasterHalfCos(v) {
_f_fasterHalfCos[0] = v;
_i_fasterHalfCos[0] &= 0x7FFFFFFF;
const qpprox = 1.0 - twoOverPi * _f_fasterHalfCos[0];
return qpprox + _p_fasterHalfCos * qpprox * (1.0 - qpprox * qpprox);
}
export function fastTan(v) {
const k = (v * invTwoPi) | 0;
const half = (v < 0) ? -0.5 : 0.5;
const x = v - (half + k) * twoPi;
return fastHalfSin(x) / fastHalfCos(x);
}
export function fasterTan(v) {
const k = (v * invTwoPi) | 0;
const half = (v < 0) ? -0.5 : 0.5;
const x = v - (half + k) * twoPi;
return fasterHalfSin(x) / fasterHalfCos(x);
}
const piOverFour = Math.PI / 4;
/**
* Adapted from:
* "Efficient approximations for the arctangent function"
* Rajan, S. Sichun Wang Inkol, R. Joyal, A., May 2006
*/
export function fastAtan(v) {
return piOverFour * v - v * (Math.abs(v) - 1) * (0.2447 + 0.0663 * Math.abs(v));
}
export function fastAtan2(y, x) {
// reduce range to [-1, 1] by flipping y/x so the larger is up
let t = Math.abs(x); // used to undo flipping
let opposite = Math.abs(y);
const adjacent = Math.max(t, opposite);
opposite = Math.min(t, opposite);
t = fastAtan(opposite / adjacent);
// undo flipping
t = Math.abs(y) > Math.abs(x) ? halfPi - t : t;
t = x < 0.0 ? Math.PI - t : t;
t = y < 0.0 ? -t : t;
return t;
}