UNPKG

molstar

Version:

A comprehensive macromolecular library.

676 lines (675 loc) 30.2 kB
/** * Copyright (c) 2018-2024 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author Alexander Rose <alexander.rose@weirdbyte.de> * @author David Sehnal <david.sehnal@gmail.com> */ import { ValueCell } from '../../../mol-util'; import { Vec3, Mat4, Mat3, Vec4 } from '../../../mol-math/linear-algebra'; import { Sphere3D } from '../../../mol-math/geometry'; import { transformPositionArray, transformDirectionArray, computeIndexedVertexNormals, createGroupMapping } from '../../util'; import { createMarkers } from '../marker-data'; import { LocationIterator, PositionLocation } from '../../util/location-iterator'; import { createColors } from '../color-data'; import { ChunkedArray, hashFnv32a, invertCantorPairing, sortedCantorPairing } from '../../../mol-data/util'; import { ParamDefinition as PD } from '../../../mol-util/param-definition'; import { calculateInvariantBoundingSphere, calculateTransformBoundingSphere } from '../../../mol-gl/renderable/util'; import { BaseGeometry } from '../base'; import { createEmptyOverpaint } from '../overpaint-data'; import { createEmptyTransparency } from '../transparency-data'; import { createEmptyClipping } from '../clipping-data'; import { arraySetAdd } from '../../../mol-util/array'; import { degToRad } from '../../../mol-math/misc'; import { createEmptySubstance } from '../substance-data'; import { createEmptyEmissive } from '../emissive-data'; export var Mesh; (function (Mesh) { function create(vertices, indices, normals, groups, vertexCount, triangleCount, mesh) { return mesh ? update(vertices, indices, normals, groups, vertexCount, triangleCount, mesh) : fromArrays(vertices, indices, normals, groups, vertexCount, triangleCount); } Mesh.create = create; function createEmpty(mesh) { const vb = mesh ? mesh.vertexBuffer.ref.value : new Float32Array(0); const ib = mesh ? mesh.indexBuffer.ref.value : new Uint32Array(0); const nb = mesh ? mesh.normalBuffer.ref.value : new Float32Array(0); const gb = mesh ? mesh.groupBuffer.ref.value : new Float32Array(0); return create(vb, ib, nb, gb, 0, 0, mesh); } Mesh.createEmpty = createEmpty; function hashCode(mesh) { return hashFnv32a([ mesh.vertexCount, mesh.triangleCount, mesh.vertexBuffer.ref.version, mesh.indexBuffer.ref.version, mesh.normalBuffer.ref.version, mesh.groupBuffer.ref.version ]); } function fromArrays(vertices, indices, normals, groups, vertexCount, triangleCount) { const boundingSphere = Sphere3D(); let groupMapping; let currentHash = -1; let currentGroup = -1; const mesh = { kind: 'mesh', vertexCount, triangleCount, vertexBuffer: ValueCell.create(vertices), indexBuffer: ValueCell.create(indices), normalBuffer: ValueCell.create(normals), groupBuffer: ValueCell.create(groups), varyingGroup: ValueCell.create(false), get boundingSphere() { const newHash = hashCode(mesh); if (newHash !== currentHash) { const b = calculateInvariantBoundingSphere(mesh.vertexBuffer.ref.value, mesh.vertexCount, 1); Sphere3D.copy(boundingSphere, b); currentHash = newHash; } return boundingSphere; }, get groupMapping() { if (mesh.groupBuffer.ref.version !== currentGroup) { groupMapping = createGroupMapping(mesh.groupBuffer.ref.value, mesh.vertexCount); currentGroup = mesh.groupBuffer.ref.version; } return groupMapping; }, setBoundingSphere(sphere) { Sphere3D.copy(boundingSphere, sphere); currentHash = hashCode(mesh); }, meta: {} }; return mesh; } function update(vertices, indices, normals, groups, vertexCount, triangleCount, mesh) { mesh.vertexCount = vertexCount; mesh.triangleCount = triangleCount; ValueCell.update(mesh.vertexBuffer, vertices); ValueCell.update(mesh.indexBuffer, indices); ValueCell.update(mesh.normalBuffer, normals); ValueCell.update(mesh.groupBuffer, groups); return mesh; } function computeNormals(mesh) { const { vertexCount, triangleCount } = mesh; const vertices = mesh.vertexBuffer.ref.value; const indices = mesh.indexBuffer.ref.value; const normals = mesh.normalBuffer.ref.value.length >= vertexCount * 3 ? mesh.normalBuffer.ref.value : new Float32Array(vertexCount * 3); if (normals === mesh.normalBuffer.ref.value) { normals.fill(0, 0, vertexCount * 3); } computeIndexedVertexNormals(vertices, indices, normals, vertexCount, triangleCount); ValueCell.update(mesh.normalBuffer, normals); } Mesh.computeNormals = computeNormals; function checkForDuplicateVertices(mesh, fractionDigits = 3) { const v = mesh.vertexBuffer.ref.value; const map = new Map(); const hash = (v, d) => `${v[0].toFixed(d)}|${v[1].toFixed(d)}|${v[2].toFixed(d)}`; let duplicates = 0; const a = Vec3(); for (let i = 0, il = mesh.vertexCount; i < il; ++i) { Vec3.fromArray(a, v, i * 3); const k = hash(a, fractionDigits); const count = map.get(k); if (count !== undefined) { duplicates += 1; map.set(k, count + 1); } else { map.set(k, 1); } } return duplicates; } Mesh.checkForDuplicateVertices = checkForDuplicateVertices; const tmpMat3 = Mat3(); function transform(mesh, t) { const v = mesh.vertexBuffer.ref.value; transformPositionArray(t, v, 0, mesh.vertexCount); if (!Mat4.isTranslationAndUniformScaling(t)) { const n = Mat3.directionTransform(tmpMat3, t); transformDirectionArray(n, mesh.normalBuffer.ref.value, 0, mesh.vertexCount); } ValueCell.update(mesh.vertexBuffer, v); } Mesh.transform = transform; /** Meshes may contain some original data in case any processing was done. */ function getOriginalData(x) { const { originalData } = 'kind' in x ? x.meta : x.meta.ref.value; return originalData; } Mesh.getOriginalData = getOriginalData; /** * Ensure that each vertices of each triangle have the same group id. * Note that normals are copied over and can't be re-created from the new mesh. */ function uniformTriangleGroup(mesh, splitTriangles = true) { const { indexBuffer, vertexBuffer, groupBuffer, normalBuffer, triangleCount, vertexCount } = mesh; const ib = indexBuffer.ref.value; const vb = vertexBuffer.ref.value; const gb = groupBuffer.ref.value; const nb = normalBuffer.ref.value; // new const index = ChunkedArray.create(Uint32Array, 3, 1024, triangleCount); // re-use const vertex = ChunkedArray.create(Float32Array, 3, 1024, vb); vertex.currentIndex = vertexCount * 3; vertex.elementCount = vertexCount; const normal = ChunkedArray.create(Float32Array, 3, 1024, nb); normal.currentIndex = vertexCount * 3; normal.elementCount = vertexCount; const group = ChunkedArray.create(Float32Array, 1, 1024, gb); group.currentIndex = vertexCount; group.elementCount = vertexCount; const vi = Vec3(); const vj = Vec3(); const vk = Vec3(); const ni = Vec3(); const nj = Vec3(); const nk = Vec3(); function add(i) { Vec3.fromArray(vi, vb, i * 3); Vec3.fromArray(ni, nb, i * 3); ChunkedArray.add3(vertex, vi[0], vi[1], vi[2]); ChunkedArray.add3(normal, ni[0], ni[1], ni[2]); } function addMid(i, j) { Vec3.fromArray(vi, vb, i * 3); Vec3.fromArray(vj, vb, j * 3); Vec3.scale(vi, Vec3.add(vi, vi, vj), 0.5); Vec3.fromArray(ni, nb, i * 3); Vec3.fromArray(nj, nb, j * 3); Vec3.scale(ni, Vec3.add(ni, ni, nj), 0.5); ChunkedArray.add3(vertex, vi[0], vi[1], vi[2]); ChunkedArray.add3(normal, ni[0], ni[1], ni[2]); } function addCenter(i, j, k) { Vec3.fromArray(vi, vb, i * 3); Vec3.fromArray(vj, vb, j * 3); Vec3.fromArray(vk, vb, k * 3); Vec3.scale(vi, Vec3.add(vi, Vec3.add(vi, vi, vj), vk), 1 / 3); Vec3.fromArray(ni, nb, i * 3); Vec3.fromArray(nj, nb, j * 3); Vec3.fromArray(nk, nb, k * 3); Vec3.scale(ni, Vec3.add(ni, Vec3.add(ni, ni, nj), nk), 1 / 3); ChunkedArray.add3(vertex, vi[0], vi[1], vi[2]); ChunkedArray.add3(normal, ni[0], ni[1], ni[2]); } function split2(i0, i1, i2, g0, g1) { ++newTriangleCount; add(i0); addMid(i0, i1); addMid(i0, i2); ChunkedArray.add3(index, newVertexCount, newVertexCount + 1, newVertexCount + 2); for (let j = 0; j < 3; ++j) ChunkedArray.add(group, g0); newVertexCount += 3; newTriangleCount += 2; add(i1); add(i2); addMid(i0, i1); addMid(i0, i2); ChunkedArray.add3(index, newVertexCount, newVertexCount + 1, newVertexCount + 3); ChunkedArray.add3(index, newVertexCount, newVertexCount + 3, newVertexCount + 2); for (let j = 0; j < 4; ++j) ChunkedArray.add(group, g1); newVertexCount += 4; } let newVertexCount = vertexCount; let newTriangleCount = 0; if (splitTriangles) { for (let i = 0, il = triangleCount; i < il; ++i) { const i0 = ib[i * 3], i1 = ib[i * 3 + 1], i2 = ib[i * 3 + 2]; const g0 = gb[i0], g1 = gb[i1], g2 = gb[i2]; if (g0 === g1 && g0 === g2) { ++newTriangleCount; ChunkedArray.add3(index, i0, i1, i2); } else if (g0 === g1) { split2(i2, i0, i1, g2, g0); } else if (g0 === g2) { split2(i1, i2, i0, g1, g2); } else if (g1 === g2) { split2(i0, i1, i2, g0, g1); } else { newTriangleCount += 2; add(i0); addMid(i0, i1); addMid(i0, i2); addCenter(i0, i1, i2); ChunkedArray.add3(index, newVertexCount, newVertexCount + 1, newVertexCount + 3); ChunkedArray.add3(index, newVertexCount, newVertexCount + 3, newVertexCount + 2); for (let j = 0; j < 4; ++j) ChunkedArray.add(group, g0); newVertexCount += 4; newTriangleCount += 2; add(i1); addMid(i1, i2); addMid(i1, i0); addCenter(i0, i1, i2); ChunkedArray.add3(index, newVertexCount, newVertexCount + 1, newVertexCount + 3); ChunkedArray.add3(index, newVertexCount, newVertexCount + 3, newVertexCount + 2); for (let j = 0; j < 4; ++j) ChunkedArray.add(group, g1); newVertexCount += 4; newTriangleCount += 2; add(i2); addMid(i2, i1); addMid(i2, i0); addCenter(i0, i1, i2); ChunkedArray.add3(index, newVertexCount + 3, newVertexCount + 1, newVertexCount); ChunkedArray.add3(index, newVertexCount + 2, newVertexCount + 3, newVertexCount); for (let j = 0; j < 4; ++j) ChunkedArray.add(group, g2); newVertexCount += 4; } } } else { for (let i = 0, il = triangleCount; i < il; ++i) { const i0 = ib[i * 3], i1 = ib[i * 3 + 1], i2 = ib[i * 3 + 2]; const g0 = gb[i0], g1 = gb[i1], g2 = gb[i2]; if (g0 !== g1 || g0 !== g2) { ++newTriangleCount; add(i0); add(i1); add(i2); ChunkedArray.add3(index, newVertexCount, newVertexCount + 1, newVertexCount + 2); const g = g1 === g2 ? g1 : g0; for (let j = 0; j < 3; ++j) ChunkedArray.add(group, g); newVertexCount += 3; } else { ++newTriangleCount; ChunkedArray.add3(index, i0, i1, i2); } } } const newIb = ChunkedArray.compact(index); const newVb = ChunkedArray.compact(vertex); const newNb = ChunkedArray.compact(normal); const newGb = ChunkedArray.compact(group); mesh.vertexCount = newVertexCount; mesh.triangleCount = newTriangleCount; ValueCell.update(vertexBuffer, newVb); ValueCell.update(groupBuffer, newGb); ValueCell.update(indexBuffer, newIb); ValueCell.update(normalBuffer, newNb); // keep some original data, e.g., for geometry export mesh.meta.originalData = { indexBuffer: ib, vertexCount, triangleCount }; return mesh; } Mesh.uniformTriangleGroup = uniformTriangleGroup; // function getNeighboursMap(mesh) { const { vertexCount, triangleCount } = mesh; const elements = mesh.indexBuffer.ref.value; const neighboursMap = []; for (let i = 0; i < vertexCount; ++i) { neighboursMap[i] = []; } for (let i = 0; i < triangleCount; ++i) { const v1 = elements[i * 3]; const v2 = elements[i * 3 + 1]; const v3 = elements[i * 3 + 2]; arraySetAdd(neighboursMap[v1], v2); arraySetAdd(neighboursMap[v1], v3); arraySetAdd(neighboursMap[v2], v1); arraySetAdd(neighboursMap[v2], v3); arraySetAdd(neighboursMap[v3], v1); arraySetAdd(neighboursMap[v3], v2); } return neighboursMap; } function getEdgeCounts(mesh) { const { triangleCount } = mesh; const elements = mesh.indexBuffer.ref.value; const edgeCounts = new Map(); const add = (a, b) => { const z = sortedCantorPairing(a, b); const c = edgeCounts.get(z) || 0; edgeCounts.set(z, c + 1); }; for (let i = 0; i < triangleCount; ++i) { const a = elements[i * 3]; const b = elements[i * 3 + 1]; const c = elements[i * 3 + 2]; add(a, b); add(a, c); add(b, c); } return edgeCounts; } function getBorderVertices(edgeCounts) { const borderVertices = new Set(); const pair = [0, 0]; edgeCounts.forEach((c, z) => { if (c === 1) { invertCantorPairing(pair, z); borderVertices.add(pair[0]); borderVertices.add(pair[1]); } }); return borderVertices; } function getBorderNeighboursMap(neighboursMap, borderVertices, edgeCounts) { const borderNeighboursMap = new Map(); const add = (v, nb) => { if (borderNeighboursMap.has(v)) arraySetAdd(borderNeighboursMap.get(v), nb); else borderNeighboursMap.set(v, [nb]); }; borderVertices.forEach(v => { const neighbours = neighboursMap[v]; for (const nb of neighbours) { if (borderVertices.has(nb) && edgeCounts.get(sortedCantorPairing(v, nb)) === 1) { add(v, nb); } } }); return borderNeighboursMap; } function trimEdges(mesh, neighboursMap) { const { indexBuffer, triangleCount } = mesh; const ib = indexBuffer.ref.value; // new const index = ChunkedArray.create(Uint32Array, 3, 1024, triangleCount); let newTriangleCount = 0; for (let i = 0; i < triangleCount; ++i) { const a = ib[i * 3]; const b = ib[i * 3 + 1]; const c = ib[i * 3 + 2]; if (neighboursMap[a].length === 2 || neighboursMap[b].length === 2 || neighboursMap[c].length === 2) continue; ChunkedArray.add3(index, a, b, c); newTriangleCount += 1; } const newIb = ChunkedArray.compact(index); mesh.triangleCount = newTriangleCount; ValueCell.update(indexBuffer, newIb); return mesh; } function fillEdges(mesh, neighboursMap, borderNeighboursMap, maxLengthSquared) { var _a; const { vertexBuffer, indexBuffer, normalBuffer, triangleCount } = mesh; const vb = vertexBuffer.ref.value; const ib = indexBuffer.ref.value; const nb = normalBuffer.ref.value; // new const index = ChunkedArray.create(Uint32Array, 3, 1024, triangleCount); let newTriangleCount = 0; for (let i = 0; i < triangleCount; ++i) { ChunkedArray.add3(index, ib[i * 3], ib[i * 3 + 1], ib[i * 3 + 2]); newTriangleCount += 1; } const vA = Vec3(); const vB = Vec3(); const vC = Vec3(); const vD = Vec3(); const vAB = Vec3(); const vAC = Vec3(); const vAD = Vec3(); const vABC = Vec3(); const vAN = Vec3(); const vN = Vec3(); const AngleThreshold = degToRad(120); const added = new Set(); const indices = Array.from(borderNeighboursMap.keys()) .filter(v => borderNeighboursMap.get(v).length < 2) .map(v => { const bnd = borderNeighboursMap.get(v); Vec3.fromArray(vA, vb, v * 3); Vec3.fromArray(vB, vb, bnd[0] * 3); Vec3.fromArray(vC, vb, bnd[1] * 3); Vec3.sub(vAB, vB, vA); Vec3.sub(vAC, vC, vA); return [v, Vec3.angle(vAB, vAC)]; }); // start with the smallest angle indices.sort(([, a], [, b]) => a - b); for (const [v, angle] of indices) { if (added.has(v) || angle > AngleThreshold) continue; const nbs = borderNeighboursMap.get(v); if (neighboursMap[nbs[0]].includes(nbs[1]) && !((_a = borderNeighboursMap.get(nbs[0])) === null || _a === void 0 ? void 0 : _a.includes(nbs[1]))) continue; Vec3.fromArray(vA, vb, v * 3); Vec3.fromArray(vB, vb, nbs[0] * 3); Vec3.fromArray(vC, vb, nbs[1] * 3); Vec3.sub(vAB, vB, vA); Vec3.sub(vAC, vC, vA); Vec3.add(vABC, vAB, vAC); if (Vec3.squaredDistance(vA, vB) >= maxLengthSquared) continue; let add = false; for (const nb of neighboursMap[v]) { if (nbs.includes(nb)) continue; Vec3.fromArray(vD, vb, nb * 3); Vec3.sub(vAD, vD, vA); if (Vec3.dot(vABC, vAD) < 0) { add = true; break; } } if (!add) continue; Vec3.fromArray(vAN, nb, v * 3); Vec3.triangleNormal(vN, vA, vB, vC); if (Vec3.dot(vN, vAN) > 0) { ChunkedArray.add3(index, v, nbs[0], nbs[1]); } else { ChunkedArray.add3(index, nbs[1], nbs[0], v); } added.add(v); added.add(nbs[0]); added.add(nbs[1]); newTriangleCount += 1; } const newIb = ChunkedArray.compact(index); mesh.triangleCount = newTriangleCount; ValueCell.update(indexBuffer, newIb); return mesh; } function laplacianEdgeSmoothing(mesh, borderNeighboursMap, options) { const { iterations, lambda } = options; const a = Vec3(); const b = Vec3(); const c = Vec3(); const t = Vec3(); const mu = -lambda; let dst = new Float32Array(mesh.vertexBuffer.ref.value.length); const step = (f) => { const pos = mesh.vertexBuffer.ref.value; dst.set(pos); borderNeighboursMap.forEach((nbs, v) => { if (nbs.length !== 2) return; Vec3.fromArray(a, pos, v * 3); Vec3.fromArray(b, pos, nbs[0] * 3); Vec3.fromArray(c, pos, nbs[1] * 3); const wab = 1 / Vec3.distance(a, b); const wac = 1 / Vec3.distance(a, c); Vec3.scale(b, b, wab); Vec3.scale(c, c, wac); Vec3.add(t, b, c); Vec3.scale(t, t, 1 / (wab + wac)); Vec3.sub(t, t, a); Vec3.scale(t, t, f); Vec3.add(t, a, t); Vec3.toArray(t, dst, v * 3); }); const tmp = mesh.vertexBuffer.ref.value; ValueCell.update(mesh.vertexBuffer, dst); dst = tmp; }; for (let k = 0; k < iterations; ++k) { step(lambda); step(mu); } } function smoothEdges(mesh, options) { trimEdges(mesh, getNeighboursMap(mesh)); for (let k = 0; k < 10; ++k) { const oldTriangleCount = mesh.triangleCount; const edgeCounts = getEdgeCounts(mesh); const neighboursMap = getNeighboursMap(mesh); const borderVertices = getBorderVertices(edgeCounts); const borderNeighboursMap = getBorderNeighboursMap(neighboursMap, borderVertices, edgeCounts); fillEdges(mesh, neighboursMap, borderNeighboursMap, options.maxNewEdgeLength * options.maxNewEdgeLength); if (mesh.triangleCount === oldTriangleCount) break; } const edgeCounts = getEdgeCounts(mesh); const neighboursMap = getNeighboursMap(mesh); const borderVertices = getBorderVertices(edgeCounts); const borderNeighboursMap = getBorderNeighboursMap(neighboursMap, borderVertices, edgeCounts); laplacianEdgeSmoothing(mesh, borderNeighboursMap, { iterations: options.iterations, lambda: 0.5 }); return mesh; } Mesh.smoothEdges = smoothEdges; // Mesh.Params = { ...BaseGeometry.Params, doubleSided: PD.Boolean(false, BaseGeometry.CustomQualityParamInfo), flipSided: PD.Boolean(false, BaseGeometry.ShadingCategory), flatShaded: PD.Boolean(false, BaseGeometry.ShadingCategory), ignoreLight: PD.Boolean(false, BaseGeometry.ShadingCategory), celShaded: PD.Boolean(false, BaseGeometry.ShadingCategory), xrayShaded: PD.Select(false, [[false, 'Off'], [true, 'On'], ['inverted', 'Inverted']], BaseGeometry.ShadingCategory), transparentBackfaces: PD.Select('off', PD.arrayToOptions(['off', 'on', 'opaque']), BaseGeometry.ShadingCategory), bumpFrequency: PD.Numeric(0, { min: 0, max: 10, step: 0.1 }, BaseGeometry.ShadingCategory), bumpAmplitude: PD.Numeric(1, { min: 0, max: 5, step: 0.1 }, BaseGeometry.ShadingCategory), }; Mesh.Utils = { Params: Mesh.Params, createEmpty, createValues, createValuesSimple, updateValues, updateBoundingSphere, createRenderableState, updateRenderableState, createPositionIterator }; function createPositionIterator(mesh, transform) { const groupCount = mesh.vertexCount; const instanceCount = transform.instanceCount.ref.value; const location = PositionLocation(); const p = location.position; const n = location.normal; const vs = mesh.vertexBuffer.ref.value; const ns = mesh.normalBuffer.ref.value; const m = transform.aTransform.ref.value; const getLocation = (groupIndex, instanceIndex) => { if (instanceIndex < 0) { Vec3.fromArray(p, vs, groupIndex * 3); Vec3.fromArray(n, ns, groupIndex * 3); } else { Vec3.transformMat4Offset(p, vs, m, 0, groupIndex * 3, instanceIndex * 16); Vec3.transformDirectionOffset(n, ns, m, 0, groupIndex * 3, instanceIndex * 16); } return location; }; return LocationIterator(groupCount, instanceCount, 1, getLocation); } function createValues(mesh, transform, locationIt, theme, props) { const { instanceCount, groupCount } = locationIt; const positionIt = createPositionIterator(mesh, transform); const color = createColors(locationIt, positionIt, theme.color); const marker = props.instanceGranularity ? createMarkers(instanceCount, 'instance') : createMarkers(instanceCount * groupCount, 'groupInstance'); const overpaint = createEmptyOverpaint(); const transparency = createEmptyTransparency(); const emissive = createEmptyEmissive(); const material = createEmptySubstance(); const clipping = createEmptyClipping(); const counts = { drawCount: mesh.triangleCount * 3, vertexCount: mesh.vertexCount, groupCount, instanceCount }; const invariantBoundingSphere = Sphere3D.clone(mesh.boundingSphere); const boundingSphere = calculateTransformBoundingSphere(invariantBoundingSphere, transform.aTransform.ref.value, instanceCount, 0); return { dGeometryType: ValueCell.create('mesh'), aPosition: mesh.vertexBuffer, aNormal: mesh.normalBuffer, aGroup: mesh.groupBuffer, elements: mesh.indexBuffer, dVaryingGroup: mesh.varyingGroup, boundingSphere: ValueCell.create(boundingSphere), invariantBoundingSphere: ValueCell.create(invariantBoundingSphere), uInvariantBoundingSphere: ValueCell.create(Vec4.ofSphere(invariantBoundingSphere)), ...color, ...marker, ...overpaint, ...transparency, ...emissive, ...material, ...clipping, ...transform, ...BaseGeometry.createValues(props, counts), uDoubleSided: ValueCell.create(props.doubleSided), dFlatShaded: ValueCell.create(props.flatShaded), dFlipSided: ValueCell.create(props.flipSided), dIgnoreLight: ValueCell.create(props.ignoreLight), dCelShaded: ValueCell.create(props.celShaded), dXrayShaded: ValueCell.create(props.xrayShaded === 'inverted' ? 'inverted' : props.xrayShaded === true ? 'on' : 'off'), dTransparentBackfaces: ValueCell.create(props.transparentBackfaces), uBumpFrequency: ValueCell.create(props.bumpFrequency), uBumpAmplitude: ValueCell.create(props.bumpAmplitude), meta: ValueCell.create(mesh.meta), }; } function createValuesSimple(mesh, props, colorValue, sizeValue, transform) { const s = BaseGeometry.createSimple(colorValue, sizeValue, transform); const p = { ...PD.getDefaultValues(Mesh.Params), ...props }; return createValues(mesh, s.transform, s.locationIterator, s.theme, p); } function updateValues(values, props) { BaseGeometry.updateValues(values, props); ValueCell.updateIfChanged(values.uDoubleSided, props.doubleSided); ValueCell.updateIfChanged(values.dFlatShaded, props.flatShaded); ValueCell.updateIfChanged(values.dFlipSided, props.flipSided); ValueCell.updateIfChanged(values.dIgnoreLight, props.ignoreLight); ValueCell.updateIfChanged(values.dCelShaded, props.celShaded); ValueCell.updateIfChanged(values.dXrayShaded, props.xrayShaded === 'inverted' ? 'inverted' : props.xrayShaded === true ? 'on' : 'off'); ValueCell.updateIfChanged(values.dTransparentBackfaces, props.transparentBackfaces); ValueCell.updateIfChanged(values.uBumpFrequency, props.bumpFrequency); ValueCell.updateIfChanged(values.uBumpAmplitude, props.bumpAmplitude); } function updateBoundingSphere(values, mesh) { const invariantBoundingSphere = Sphere3D.clone(mesh.boundingSphere); const boundingSphere = calculateTransformBoundingSphere(invariantBoundingSphere, values.aTransform.ref.value, values.instanceCount.ref.value, 0); if (!Sphere3D.equals(boundingSphere, values.boundingSphere.ref.value)) { ValueCell.update(values.boundingSphere, boundingSphere); } if (!Sphere3D.equals(invariantBoundingSphere, values.invariantBoundingSphere.ref.value)) { ValueCell.update(values.invariantBoundingSphere, invariantBoundingSphere); ValueCell.update(values.uInvariantBoundingSphere, Vec4.fromSphere(values.uInvariantBoundingSphere.ref.value, invariantBoundingSphere)); } } function createRenderableState(props) { const state = BaseGeometry.createRenderableState(props); updateRenderableState(state, props); return state; } function updateRenderableState(state, props) { BaseGeometry.updateRenderableState(state, props); state.opaque = state.opaque && !props.xrayShaded; state.writeDepth = state.opaque; } })(Mesh || (Mesh = {}));