UNPKG

molstar

Version:

A comprehensive macromolecular library.

94 lines (93 loc) 5.92 kB
/** * Copyright (c) 2018-2021 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author Alexander Rose <alexander.rose@weirdbyte.de> */ import { __assign, __awaiter, __generator } from "tslib"; import { Task } from '../../../../mol-task'; import { ParamDefinition as PD } from '../../../../mol-util/param-definition'; import { GaussianDensityTexture, GaussianDensityTexture2d } from '../../../../mol-math/geometry/gaussian-density/gpu'; import { getUnitConformationAndRadius, getStructureConformationAndRadius, CommonSurfaceParams, ensureReasonableResolution } from './common'; import { BaseGeometry } from '../../../../mol-geo/geometry/base'; import { GaussianDensityCPU } from '../../../../mol-math/geometry/gaussian-density/cpu'; export var GaussianDensityParams = __assign({ resolution: PD.Numeric(1, { min: 0.1, max: 20, step: 0.1 }, __assign({ description: 'Grid resolution/cell spacing.' }, BaseGeometry.CustomQualityParamInfo)), radiusOffset: PD.Numeric(0, { min: 0, max: 10, step: 0.1 }, { description: 'Extra/offset radius added to the atoms/coarse elements for gaussian calculation. Useful to create coarse, low resolution surfaces.' }), smoothness: PD.Numeric(1.5, { min: 0.5, max: 2.5, step: 0.1 }, { description: 'Smoothness of the gausian surface, lower is smoother.' }) }, CommonSurfaceParams); export var DefaultGaussianDensityProps = PD.getDefaultValues(GaussianDensityParams); // export function getTextureMaxCells(webgl, structure) { var d = webgl.maxTextureSize / 3; return (d * d) / Math.max(1, (structure ? structure.units.length / 16 : 1)); } // export function computeUnitGaussianDensity(structure, unit, sizeTheme, props) { var _this = this; var box = unit.lookup3d.boundary.box; var p = ensureReasonableResolution(box, props); var _a = getUnitConformationAndRadius(structure, unit, sizeTheme, p), position = _a.position, radius = _a.radius; return Task.create('Gaussian Density', function (ctx) { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, GaussianDensityCPU(ctx, position, box, radius, p)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }); } export function computeUnitGaussianDensityTexture(structure, unit, sizeTheme, props, webgl, texture) { var _this = this; var box = unit.lookup3d.boundary.box; var p = ensureReasonableResolution(box, props, getTextureMaxCells(webgl, structure)); var _a = getUnitConformationAndRadius(structure, unit, sizeTheme, p), position = _a.position, radius = _a.radius; return Task.create('Gaussian Density', function (ctx) { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { return [2 /*return*/, GaussianDensityTexture(webgl, position, box, radius, p, texture)]; }); }); }); } export function computeUnitGaussianDensityTexture2d(structure, unit, sizeTheme, powerOfTwo, props, webgl, texture) { var _this = this; var box = unit.lookup3d.boundary.box; var p = ensureReasonableResolution(box, props, getTextureMaxCells(webgl, structure)); var _a = getUnitConformationAndRadius(structure, unit, sizeTheme, p), position = _a.position, radius = _a.radius; return Task.create('Gaussian Density', function (ctx) { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { return [2 /*return*/, GaussianDensityTexture2d(webgl, position, box, radius, powerOfTwo, p, texture)]; }); }); }); } // export function computeStructureGaussianDensity(structure, sizeTheme, props) { var _this = this; var box = structure.lookup3d.boundary.box; var p = ensureReasonableResolution(box, props); var _a = getStructureConformationAndRadius(structure, sizeTheme, props.ignoreHydrogens, props.traceOnly), position = _a.position, radius = _a.radius; return Task.create('Gaussian Density', function (ctx) { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, GaussianDensityCPU(ctx, position, box, radius, p)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }); } export function computeStructureGaussianDensityTexture(structure, sizeTheme, props, webgl, texture) { var _this = this; var box = structure.lookup3d.boundary.box; var p = ensureReasonableResolution(box, props, getTextureMaxCells(webgl)); var _a = getStructureConformationAndRadius(structure, sizeTheme, props.ignoreHydrogens, props.traceOnly), position = _a.position, radius = _a.radius; return Task.create('Gaussian Density', function (ctx) { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { return [2 /*return*/, GaussianDensityTexture(webgl, position, box, radius, p, texture)]; }); }); }); } export function computeStructureGaussianDensityTexture2d(structure, sizeTheme, powerOfTwo, props, webgl, texture) { var _this = this; var box = structure.lookup3d.boundary.box; var p = ensureReasonableResolution(box, props, getTextureMaxCells(webgl)); var _a = getStructureConformationAndRadius(structure, sizeTheme, props.ignoreHydrogens, props.traceOnly), position = _a.position, radius = _a.radius; return Task.create('Gaussian Density', function (ctx) { return __awaiter(_this, void 0, void 0, function () { return __generator(this, function (_a) { return [2 /*return*/, GaussianDensityTexture2d(webgl, position, box, radius, powerOfTwo, p, texture)]; }); }); }); }