molstar
Version:
A comprehensive macromolecular library.
107 lines (106 loc) • 6.27 kB
JavaScript
/**
* Copyright (c) 2019-2020 mol* contributors, licensed under MIT, See LICENSE file for more info.
*
* @author Alexander Rose <alexander.rose@weirdbyte.de>
*/
import { __assign } from "tslib";
import { ParamDefinition as PD } from '../../../mol-util/param-definition';
import { Mesh } from '../../../mol-geo/geometry/mesh/mesh';
import { MeshBuilder } from '../../../mol-geo/geometry/mesh/mesh-builder';
import { createCurveSegmentState, PolymerTraceIterator, interpolateCurveSegment, interpolateSizes, PolymerLocationIterator, getPolymerElementLoci, eachPolymerElement, StandardTension, StandardShift, NucleicShift, OverhangFactor } from './util/polymer';
import { isNucleic } from '../../../mol-model/structure/model/types';
import { addTube } from '../../../mol-geo/geometry/mesh/builder/tube';
import { UnitsMeshParams, UnitsMeshVisual } from '../units-visual';
import { addSheet } from '../../../mol-geo/geometry/mesh/builder/sheet';
import { addRibbon } from '../../../mol-geo/geometry/mesh/builder/ribbon';
import { Vec3 } from '../../../mol-math/linear-algebra';
import { addSphere } from '../../../mol-geo/geometry/mesh/builder/sphere';
import { BaseGeometry } from '../../../mol-geo/geometry/base';
import { Sphere3D } from '../../../mol-math/geometry';
export var PolymerTubeMeshParams = {
sizeFactor: PD.Numeric(0.2, { min: 0, max: 10, step: 0.01 }),
detail: PD.Numeric(0, { min: 0, max: 3, step: 1 }, BaseGeometry.CustomQualityParamInfo),
linearSegments: PD.Numeric(8, { min: 1, max: 48, step: 1 }, BaseGeometry.CustomQualityParamInfo),
radialSegments: PD.Numeric(16, { min: 2, max: 56, step: 2 }, BaseGeometry.CustomQualityParamInfo),
};
export var DefaultPolymerTubeMeshProps = PD.getDefaultValues(PolymerTubeMeshParams);
var tmpV1 = Vec3();
function createPolymerTubeMesh(ctx, unit, structure, theme, props, mesh) {
var polymerElementCount = unit.polymerElements.length;
if (!polymerElementCount)
return Mesh.createEmpty(mesh);
var sizeFactor = props.sizeFactor, detail = props.detail, linearSegments = props.linearSegments, radialSegments = props.radialSegments;
var vertexCount = linearSegments * radialSegments * polymerElementCount + (radialSegments + 1) * polymerElementCount * 2;
var builderState = MeshBuilder.createState(vertexCount, vertexCount / 10, mesh);
var state = createCurveSegmentState(linearSegments);
var curvePoints = state.curvePoints, normalVectors = state.normalVectors, binormalVectors = state.binormalVectors, widthValues = state.widthValues, heightValues = state.heightValues;
var i = 0;
var polymerTraceIt = PolymerTraceIterator(unit, structure, { ignoreSecondaryStructure: true });
while (polymerTraceIt.hasNext) {
var v = polymerTraceIt.move();
builderState.currentGroup = i;
var isNucleicType = isNucleic(v.moleculeType);
var shift = isNucleicType ? NucleicShift : StandardShift;
interpolateCurveSegment(state, v, StandardTension, shift);
var startCap = v.coarseBackboneFirst || v.first;
var endCap = v.coarseBackboneLast || v.last;
var s0 = theme.size.size(v.centerPrev) * sizeFactor;
var s1 = theme.size.size(v.center) * sizeFactor;
var s2 = theme.size.size(v.centerNext) * sizeFactor;
interpolateSizes(state, s0, s1, s2, s0, s1, s2, shift);
var segmentCount = linearSegments;
if (v.initial) {
segmentCount = Math.max(Math.round(linearSegments * shift), 1);
var offset = linearSegments - segmentCount;
curvePoints.copyWithin(0, offset * 3);
binormalVectors.copyWithin(0, offset * 3);
normalVectors.copyWithin(0, offset * 3);
widthValues.copyWithin(0, offset * 3);
heightValues.copyWithin(0, offset * 3);
Vec3.fromArray(tmpV1, curvePoints, 3);
Vec3.normalize(tmpV1, Vec3.sub(tmpV1, v.p2, tmpV1));
Vec3.scaleAndAdd(tmpV1, v.p2, tmpV1, s1 * OverhangFactor);
Vec3.toArray(tmpV1, curvePoints, 0);
}
else if (v.final) {
segmentCount = Math.max(Math.round(linearSegments * (1 - shift)), 1);
Vec3.fromArray(tmpV1, curvePoints, segmentCount * 3 - 3);
Vec3.normalize(tmpV1, Vec3.sub(tmpV1, v.p2, tmpV1));
Vec3.scaleAndAdd(tmpV1, v.p2, tmpV1, s1 * OverhangFactor);
Vec3.toArray(tmpV1, curvePoints, segmentCount * 3);
}
if (v.initial === true && v.final === true) {
addSphere(builderState, v.p2, s1 * 2, detail);
}
else if (radialSegments === 2) {
addRibbon(builderState, curvePoints, normalVectors, binormalVectors, segmentCount, widthValues, heightValues, 0);
}
else if (radialSegments === 4) {
addSheet(builderState, curvePoints, normalVectors, binormalVectors, segmentCount, widthValues, heightValues, 0, startCap, endCap);
}
else {
addTube(builderState, curvePoints, normalVectors, binormalVectors, segmentCount, radialSegments, widthValues, heightValues, startCap, endCap, 'elliptical');
}
++i;
}
var m = MeshBuilder.getMesh(builderState);
var sphere = Sphere3D.expand(Sphere3D(), unit.boundary.sphere, 1 * props.sizeFactor);
m.setBoundingSphere(sphere);
return m;
}
export var PolymerTubeParams = __assign(__assign({}, UnitsMeshParams), PolymerTubeMeshParams);
export function PolymerTubeVisual(materialId) {
return UnitsMeshVisual({
defaultProps: PD.getDefaultValues(PolymerTubeParams),
createGeometry: createPolymerTubeMesh,
createLocationIterator: PolymerLocationIterator.fromGroup,
getLoci: getPolymerElementLoci,
eachLocation: eachPolymerElement,
setUpdateState: function (state, newProps, currentProps) {
state.createGeometry = (newProps.sizeFactor !== currentProps.sizeFactor ||
newProps.detail !== currentProps.detail ||
newProps.linearSegments !== currentProps.linearSegments ||
newProps.radialSegments !== currentProps.radialSegments);
}
}, materialId);
}