UNPKG

molstar

Version:

A comprehensive macromolecular library.

104 lines (103 loc) 7.24 kB
"use strict"; /** * Copyright (c) 2018-2021 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author Alexander Rose <alexander.rose@weirdbyte.de> */ Object.defineProperty(exports, "__esModule", { value: true }); exports.computeStructureGaussianDensityTexture2d = exports.computeStructureGaussianDensityTexture = exports.computeStructureGaussianDensity = exports.computeUnitGaussianDensityTexture2d = exports.computeUnitGaussianDensityTexture = exports.computeUnitGaussianDensity = exports.getTextureMaxCells = exports.DefaultGaussianDensityProps = exports.GaussianDensityParams = void 0; var tslib_1 = require("tslib"); var mol_task_1 = require("../../../../mol-task"); var param_definition_1 = require("../../../../mol-util/param-definition"); var gpu_1 = require("../../../../mol-math/geometry/gaussian-density/gpu"); var common_1 = require("./common"); var base_1 = require("../../../../mol-geo/geometry/base"); var cpu_1 = require("../../../../mol-math/geometry/gaussian-density/cpu"); exports.GaussianDensityParams = tslib_1.__assign({ resolution: param_definition_1.ParamDefinition.Numeric(1, { min: 0.1, max: 20, step: 0.1 }, tslib_1.__assign({ description: 'Grid resolution/cell spacing.' }, base_1.BaseGeometry.CustomQualityParamInfo)), radiusOffset: param_definition_1.ParamDefinition.Numeric(0, { min: 0, max: 10, step: 0.1 }, { description: 'Extra/offset radius added to the atoms/coarse elements for gaussian calculation. Useful to create coarse, low resolution surfaces.' }), smoothness: param_definition_1.ParamDefinition.Numeric(1.5, { min: 0.5, max: 2.5, step: 0.1 }, { description: 'Smoothness of the gausian surface, lower is smoother.' }) }, common_1.CommonSurfaceParams); exports.DefaultGaussianDensityProps = param_definition_1.ParamDefinition.getDefaultValues(exports.GaussianDensityParams); // function getTextureMaxCells(webgl, structure) { var d = webgl.maxTextureSize / 3; return (d * d) / Math.max(1, (structure ? structure.units.length / 16 : 1)); } exports.getTextureMaxCells = getTextureMaxCells; // function computeUnitGaussianDensity(structure, unit, sizeTheme, props) { var _this = this; var box = unit.lookup3d.boundary.box; var p = (0, common_1.ensureReasonableResolution)(box, props); var _a = (0, common_1.getUnitConformationAndRadius)(structure, unit, sizeTheme, p), position = _a.position, radius = _a.radius; return mol_task_1.Task.create('Gaussian Density', function (ctx) { return tslib_1.__awaiter(_this, void 0, void 0, function () { return tslib_1.__generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, cpu_1.GaussianDensityCPU)(ctx, position, box, radius, p)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }); } exports.computeUnitGaussianDensity = computeUnitGaussianDensity; function computeUnitGaussianDensityTexture(structure, unit, sizeTheme, props, webgl, texture) { var _this = this; var box = unit.lookup3d.boundary.box; var p = (0, common_1.ensureReasonableResolution)(box, props, getTextureMaxCells(webgl, structure)); var _a = (0, common_1.getUnitConformationAndRadius)(structure, unit, sizeTheme, p), position = _a.position, radius = _a.radius; return mol_task_1.Task.create('Gaussian Density', function (ctx) { return tslib_1.__awaiter(_this, void 0, void 0, function () { return tslib_1.__generator(this, function (_a) { return [2 /*return*/, (0, gpu_1.GaussianDensityTexture)(webgl, position, box, radius, p, texture)]; }); }); }); } exports.computeUnitGaussianDensityTexture = computeUnitGaussianDensityTexture; function computeUnitGaussianDensityTexture2d(structure, unit, sizeTheme, powerOfTwo, props, webgl, texture) { var _this = this; var box = unit.lookup3d.boundary.box; var p = (0, common_1.ensureReasonableResolution)(box, props, getTextureMaxCells(webgl, structure)); var _a = (0, common_1.getUnitConformationAndRadius)(structure, unit, sizeTheme, p), position = _a.position, radius = _a.radius; return mol_task_1.Task.create('Gaussian Density', function (ctx) { return tslib_1.__awaiter(_this, void 0, void 0, function () { return tslib_1.__generator(this, function (_a) { return [2 /*return*/, (0, gpu_1.GaussianDensityTexture2d)(webgl, position, box, radius, powerOfTwo, p, texture)]; }); }); }); } exports.computeUnitGaussianDensityTexture2d = computeUnitGaussianDensityTexture2d; // function computeStructureGaussianDensity(structure, sizeTheme, props) { var _this = this; var box = structure.lookup3d.boundary.box; var p = (0, common_1.ensureReasonableResolution)(box, props); var _a = (0, common_1.getStructureConformationAndRadius)(structure, sizeTheme, props.ignoreHydrogens, props.traceOnly), position = _a.position, radius = _a.radius; return mol_task_1.Task.create('Gaussian Density', function (ctx) { return tslib_1.__awaiter(_this, void 0, void 0, function () { return tslib_1.__generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, (0, cpu_1.GaussianDensityCPU)(ctx, position, box, radius, p)]; case 1: return [2 /*return*/, _a.sent()]; } }); }); }); } exports.computeStructureGaussianDensity = computeStructureGaussianDensity; function computeStructureGaussianDensityTexture(structure, sizeTheme, props, webgl, texture) { var _this = this; var box = structure.lookup3d.boundary.box; var p = (0, common_1.ensureReasonableResolution)(box, props, getTextureMaxCells(webgl)); var _a = (0, common_1.getStructureConformationAndRadius)(structure, sizeTheme, props.ignoreHydrogens, props.traceOnly), position = _a.position, radius = _a.radius; return mol_task_1.Task.create('Gaussian Density', function (ctx) { return tslib_1.__awaiter(_this, void 0, void 0, function () { return tslib_1.__generator(this, function (_a) { return [2 /*return*/, (0, gpu_1.GaussianDensityTexture)(webgl, position, box, radius, p, texture)]; }); }); }); } exports.computeStructureGaussianDensityTexture = computeStructureGaussianDensityTexture; function computeStructureGaussianDensityTexture2d(structure, sizeTheme, powerOfTwo, props, webgl, texture) { var _this = this; var box = structure.lookup3d.boundary.box; var p = (0, common_1.ensureReasonableResolution)(box, props, getTextureMaxCells(webgl)); var _a = (0, common_1.getStructureConformationAndRadius)(structure, sizeTheme, props.ignoreHydrogens, props.traceOnly), position = _a.position, radius = _a.radius; return mol_task_1.Task.create('Gaussian Density', function (ctx) { return tslib_1.__awaiter(_this, void 0, void 0, function () { return tslib_1.__generator(this, function (_a) { return [2 /*return*/, (0, gpu_1.GaussianDensityTexture2d)(webgl, position, box, radius, powerOfTwo, p, texture)]; }); }); }); } exports.computeStructureGaussianDensityTexture2d = computeStructureGaussianDensityTexture2d;