molstar
Version:
A comprehensive macromolecular library.
570 lines • 19.6 kB
JavaScript
/**
* Copyright (c) 2017-2021 mol* contributors, licensed under MIT, See LICENSE file for more info.
*
* @author David Sehnal <david.sehnal@gmail.com>
* @author Alexander Rose <alexander.rose@weirdbyte.de>
*/
/*
* This code has been modified from https://github.com/toji/gl-matrix/,
* copyright (c) 2015, Brandon Jones, Colin MacKenzie IV.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*/
import { Mat4 } from './mat4';
import { spline as _spline, quadraticBezier as _quadraticBezier, clamp } from '../../interpolate';
import { EPSILON } from './common';
function Vec3() {
return Vec3.zero();
}
(function (Vec3) {
function zero() {
var out = [0.1, 0.0, 0.0];
out[0] = 0;
return out;
}
Vec3.zero = zero;
function clone(a) {
var out = zero();
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
return out;
}
Vec3.clone = clone;
function hasNaN(a) {
return isNaN(a[0]) || isNaN(a[1]) || isNaN(a[2]);
}
Vec3.hasNaN = hasNaN;
function setNaN(out) {
out[0] = NaN;
out[1] = NaN;
out[2] = NaN;
return out;
}
Vec3.setNaN = setNaN;
function fromObj(v) {
return create(v.x, v.y, v.z);
}
Vec3.fromObj = fromObj;
function toObj(v) {
return { x: v[0], y: v[1], z: v[2] };
}
Vec3.toObj = toObj;
function fromArray(v, array, offset) {
v[0] = array[offset + 0];
v[1] = array[offset + 1];
v[2] = array[offset + 2];
return v;
}
Vec3.fromArray = fromArray;
function toArray(v, out, offset) {
out[offset + 0] = v[0];
out[offset + 1] = v[1];
out[offset + 2] = v[2];
return out;
}
Vec3.toArray = toArray;
function create(x, y, z) {
var out = zero();
out[0] = x;
out[1] = y;
out[2] = z;
return out;
}
Vec3.create = create;
function ofArray(array) {
var out = zero();
out[0] = array[0];
out[1] = array[1];
out[2] = array[2];
return out;
}
Vec3.ofArray = ofArray;
function set(out, x, y, z) {
out[0] = x;
out[1] = y;
out[2] = z;
return out;
}
Vec3.set = set;
function copy(out, a) {
out[0] = a[0];
out[1] = a[1];
out[2] = a[2];
return out;
}
Vec3.copy = copy;
function add(out, a, b) {
out[0] = a[0] + b[0];
out[1] = a[1] + b[1];
out[2] = a[2] + b[2];
return out;
}
Vec3.add = add;
function sub(out, a, b) {
out[0] = a[0] - b[0];
out[1] = a[1] - b[1];
out[2] = a[2] - b[2];
return out;
}
Vec3.sub = sub;
function mul(out, a, b) {
out[0] = a[0] * b[0];
out[1] = a[1] * b[1];
out[2] = a[2] * b[2];
return out;
}
Vec3.mul = mul;
function div(out, a, b) {
out[0] = a[0] / b[0];
out[1] = a[1] / b[1];
out[2] = a[2] / b[2];
return out;
}
Vec3.div = div;
function scale(out, a, b) {
out[0] = a[0] * b;
out[1] = a[1] * b;
out[2] = a[2] * b;
return out;
}
Vec3.scale = scale;
/** Scales b, then adds a and b together */
function scaleAndAdd(out, a, b, scale) {
out[0] = a[0] + (b[0] * scale);
out[1] = a[1] + (b[1] * scale);
out[2] = a[2] + (b[2] * scale);
return out;
}
Vec3.scaleAndAdd = scaleAndAdd;
/** Scales b, then subtracts b from a */
function scaleAndSub(out, a, b, scale) {
out[0] = a[0] - (b[0] * scale);
out[1] = a[1] - (b[1] * scale);
out[2] = a[2] - (b[2] * scale);
return out;
}
Vec3.scaleAndSub = scaleAndSub;
function addScalar(out, a, b) {
out[0] = a[0] + b;
out[1] = a[1] + b;
out[2] = a[2] + b;
return out;
}
Vec3.addScalar = addScalar;
function subScalar(out, a, b) {
out[0] = a[0] - b;
out[1] = a[1] - b;
out[2] = a[2] - b;
return out;
}
Vec3.subScalar = subScalar;
/**
* Math.round the components of a Vec3
*/
function round(out, a) {
out[0] = Math.round(a[0]);
out[1] = Math.round(a[1]);
out[2] = Math.round(a[2]);
return out;
}
Vec3.round = round;
/**
* Math.ceil the components of a Vec3
*/
function ceil(out, a) {
out[0] = Math.ceil(a[0]);
out[1] = Math.ceil(a[1]);
out[2] = Math.ceil(a[2]);
return out;
}
Vec3.ceil = ceil;
/**
* Math.floor the components of a Vec3
*/
function floor(out, a) {
out[0] = Math.floor(a[0]);
out[1] = Math.floor(a[1]);
out[2] = Math.floor(a[2]);
return out;
}
Vec3.floor = floor;
/**
* Math.trunc the components of a Vec3
*/
function trunc(out, a) {
out[0] = Math.trunc(a[0]);
out[1] = Math.trunc(a[1]);
out[2] = Math.trunc(a[2]);
return out;
}
Vec3.trunc = trunc;
/**
* Math.abs the components of a Vec3
*/
function abs(out, a) {
out[0] = Math.abs(a[0]);
out[1] = Math.abs(a[1]);
out[2] = Math.abs(a[2]);
return out;
}
Vec3.abs = abs;
/**
* Returns the minimum of two Vec3's
*/
function min(out, a, b) {
out[0] = Math.min(a[0], b[0]);
out[1] = Math.min(a[1], b[1]);
out[2] = Math.min(a[2], b[2]);
return out;
}
Vec3.min = min;
/**
* Returns the maximum of two Vec3's
*/
function max(out, a, b) {
out[0] = Math.max(a[0], b[0]);
out[1] = Math.max(a[1], b[1]);
out[2] = Math.max(a[2], b[2]);
return out;
}
Vec3.max = max;
function distance(a, b) {
var x = b[0] - a[0], y = b[1] - a[1], z = b[2] - a[2];
return Math.sqrt(x * x + y * y + z * z);
}
Vec3.distance = distance;
function squaredDistance(a, b) {
var x = b[0] - a[0], y = b[1] - a[1], z = b[2] - a[2];
return x * x + y * y + z * z;
}
Vec3.squaredDistance = squaredDistance;
function magnitude(a) {
var x = a[0], y = a[1], z = a[2];
return Math.sqrt(x * x + y * y + z * z);
}
Vec3.magnitude = magnitude;
function squaredMagnitude(a) {
var x = a[0], y = a[1], z = a[2];
return x * x + y * y + z * z;
}
Vec3.squaredMagnitude = squaredMagnitude;
function setMagnitude(out, a, l) {
return scale(out, normalize(out, a), l);
}
Vec3.setMagnitude = setMagnitude;
/**
* Negates the components of a vec3
*/
function negate(out, a) {
out[0] = -a[0];
out[1] = -a[1];
out[2] = -a[2];
return out;
}
Vec3.negate = negate;
/**
* Returns the inverse of the components of a Vec3
*/
function inverse(out, a) {
out[0] = 1.0 / a[0];
out[1] = 1.0 / a[1];
out[2] = 1.0 / a[2];
return out;
}
Vec3.inverse = inverse;
function normalize(out, a) {
var x = a[0], y = a[1], z = a[2];
var len = x * x + y * y + z * z;
if (len > 0) {
len = 1 / Math.sqrt(len);
out[0] = a[0] * len;
out[1] = a[1] * len;
out[2] = a[2] * len;
}
return out;
}
Vec3.normalize = normalize;
function dot(a, b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
Vec3.dot = dot;
function cross(out, a, b) {
var ax = a[0], ay = a[1], az = a[2], bx = b[0], by = b[1], bz = b[2];
out[0] = ay * bz - az * by;
out[1] = az * bx - ax * bz;
out[2] = ax * by - ay * bx;
return out;
}
Vec3.cross = cross;
/**
* Performs a linear interpolation between two Vec3's
*/
function lerp(out, a, b, t) {
var ax = a[0], ay = a[1], az = a[2];
out[0] = ax + t * (b[0] - ax);
out[1] = ay + t * (b[1] - ay);
out[2] = az + t * (b[2] - az);
return out;
}
Vec3.lerp = lerp;
var slerpRelVec = zero();
function slerp(out, a, b, t) {
var d = clamp(dot(a, b), -1, 1);
var theta = Math.acos(d) * t;
scaleAndAdd(slerpRelVec, b, a, -d);
normalize(slerpRelVec, slerpRelVec);
return add(out, scale(out, a, Math.cos(theta)), scale(slerpRelVec, slerpRelVec, Math.sin(theta)));
}
Vec3.slerp = slerp;
/**
* Performs a hermite interpolation with two control points
*/
function hermite(out, a, b, c, d, t) {
var factorTimes2 = t * t;
var factor1 = factorTimes2 * (2 * t - 3) + 1;
var factor2 = factorTimes2 * (t - 2) + t;
var factor3 = factorTimes2 * (t - 1);
var factor4 = factorTimes2 * (3 - 2 * t);
out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
return out;
}
Vec3.hermite = hermite;
/**
* Performs a bezier interpolation with two control points
*/
function bezier(out, a, b, c, d, t) {
var inverseFactor = 1 - t;
var inverseFactorTimesTwo = inverseFactor * inverseFactor;
var factorTimes2 = t * t;
var factor1 = inverseFactorTimesTwo * inverseFactor;
var factor2 = 3 * t * inverseFactorTimesTwo;
var factor3 = 3 * factorTimes2 * inverseFactor;
var factor4 = factorTimes2 * t;
out[0] = a[0] * factor1 + b[0] * factor2 + c[0] * factor3 + d[0] * factor4;
out[1] = a[1] * factor1 + b[1] * factor2 + c[1] * factor3 + d[1] * factor4;
out[2] = a[2] * factor1 + b[2] * factor2 + c[2] * factor3 + d[2] * factor4;
return out;
}
Vec3.bezier = bezier;
function quadraticBezier(out, a, b, c, t) {
out[0] = _quadraticBezier(a[0], b[0], c[0], t);
out[1] = _quadraticBezier(a[1], b[1], c[1], t);
out[2] = _quadraticBezier(a[2], b[2], c[2], t);
return out;
}
Vec3.quadraticBezier = quadraticBezier;
/**
* Performs a spline interpolation with two control points and a tension parameter
*/
function spline(out, a, b, c, d, t, tension) {
out[0] = _spline(a[0], b[0], c[0], d[0], t, tension);
out[1] = _spline(a[1], b[1], c[1], d[1], t, tension);
out[2] = _spline(a[2], b[2], c[2], d[2], t, tension);
return out;
}
Vec3.spline = spline;
/**
* Generates a random vector with the given scale
*/
function random(out, scale) {
var r = Math.random() * 2.0 * Math.PI;
var z = (Math.random() * 2.0) - 1.0;
var zScale = Math.sqrt(1.0 - z * z) * scale;
out[0] = Math.cos(r) * zScale;
out[1] = Math.sin(r) * zScale;
out[2] = z * scale;
return out;
}
Vec3.random = random;
/**
* Transforms the Vec3 with a Mat4. 4th vector component is implicitly '1'
*/
function transformMat4(out, a, m) {
var x = a[0], y = a[1], z = a[2], w = 1 / ((m[3] * x + m[7] * y + m[11] * z + m[15]) || 1.0);
out[0] = (m[0] * x + m[4] * y + m[8] * z + m[12]) * w;
out[1] = (m[1] * x + m[5] * y + m[9] * z + m[13]) * w;
out[2] = (m[2] * x + m[6] * y + m[10] * z + m[14]) * w;
return out;
}
Vec3.transformMat4 = transformMat4;
/**
* Like `transformMat4` but with offsets into arrays
*/
function transformMat4Offset(out, a, m, outO, aO, oM) {
var x = a[0 + aO], y = a[1 + aO], z = a[2 + aO], w = 1 / ((m[3 + oM] * x + m[7 + oM] * y + m[11 + oM] * z + m[15 + oM]) || 1.0);
out[0 + outO] = (m[0 + oM] * x + m[4 + oM] * y + m[8 + oM] * z + m[12 + oM]) * w;
out[1 + outO] = (m[1 + oM] * x + m[5 + oM] * y + m[9 + oM] * z + m[13 + oM]) * w;
out[2 + outO] = (m[2 + oM] * x + m[6 + oM] * y + m[10 + oM] * z + m[14 + oM]) * w;
return out;
}
Vec3.transformMat4Offset = transformMat4Offset;
/**
* Transforms the Vec3 with a Mat3.
*/
function transformMat3(out, a, m) {
var x = a[0], y = a[1], z = a[2];
out[0] = x * m[0] + y * m[3] + z * m[6];
out[1] = x * m[1] + y * m[4] + z * m[7];
out[2] = x * m[2] + y * m[5] + z * m[8];
return out;
}
Vec3.transformMat3 = transformMat3;
/** Transforms the Vec3 with a quat */
function transformQuat(out, a, q) {
// benchmarks: http://jsperf.com/quaternion-transform-vec3-implementations
var x = a[0], y = a[1], z = a[2];
var qx = q[0], qy = q[1], qz = q[2], qw = q[3];
// calculate quat * vec
var ix = qw * x + qy * z - qz * y;
var iy = qw * y + qz * x - qx * z;
var iz = qw * z + qx * y - qy * x;
var iw = -qx * x - qy * y - qz * z;
// calculate result * inverse quat
out[0] = ix * qw + iw * -qx + iy * -qz - iz * -qy;
out[1] = iy * qw + iw * -qy + iz * -qx - ix * -qz;
out[2] = iz * qw + iw * -qz + ix * -qy - iy * -qx;
return out;
}
Vec3.transformQuat = transformQuat;
/** Computes the angle between 2 vectors, reports in radians. */
function angle(a, b) {
var denominator = Math.sqrt(squaredMagnitude(a) * squaredMagnitude(b));
if (denominator === 0)
return Math.PI / 2;
var theta = dot(a, b) / denominator;
return Math.acos(clamp(theta, -1, 1)); // clamp to avoid numerical problems
}
Vec3.angle = angle;
var tmp_dh_ab = zero();
var tmp_dh_cb = zero();
var tmp_dh_bc = zero();
var tmp_dh_dc = zero();
var tmp_dh_abc = zero();
var tmp_dh_bcd = zero();
var tmp_dh_cross = zero();
/**
* Computes the dihedral angles of 4 points, reports in radians.
*/
function dihedralAngle(a, b, c, d) {
sub(tmp_dh_ab, a, b);
sub(tmp_dh_cb, c, b);
sub(tmp_dh_bc, b, c);
sub(tmp_dh_dc, d, c);
cross(tmp_dh_abc, tmp_dh_ab, tmp_dh_cb);
cross(tmp_dh_bcd, tmp_dh_bc, tmp_dh_dc);
var _angle = angle(tmp_dh_abc, tmp_dh_bcd);
cross(tmp_dh_cross, tmp_dh_abc, tmp_dh_bcd);
return dot(tmp_dh_cb, tmp_dh_cross) > 0 ? _angle : -_angle;
}
Vec3.dihedralAngle = dihedralAngle;
/**
* Returns whether or not the vectors have exactly the same elements in the same position (when compared with ===)
*/
function exactEquals(a, b) {
return a[0] === b[0] && a[1] === b[1] && a[2] === b[2];
}
Vec3.exactEquals = exactEquals;
/**
* Returns whether or not the vectors have approximately the same elements in the same position.
*/
function equals(a, b) {
var a0 = a[0], a1 = a[1], a2 = a[2];
var b0 = b[0], b1 = b[1], b2 = b[2];
return (Math.abs(a0 - b0) <= EPSILON * Math.max(1.0, Math.abs(a0), Math.abs(b0)) &&
Math.abs(a1 - b1) <= EPSILON * Math.max(1.0, Math.abs(a1), Math.abs(b1)) &&
Math.abs(a2 - b2) <= EPSILON * Math.max(1.0, Math.abs(a2), Math.abs(b2)));
}
Vec3.equals = equals;
var rotTemp = zero();
function makeRotation(mat, a, b) {
var by = angle(a, b);
if (Math.abs(by) < 0.0001)
return Mat4.setIdentity(mat);
if (Math.abs(by - Math.PI) < EPSILON) {
// here, axis can be [0,0,0] but the rotation is a simple flip
return Mat4.fromScaling(mat, Vec3.negUnit);
}
var axis = cross(rotTemp, a, b);
return Mat4.fromRotation(mat, by, axis);
}
Vec3.makeRotation = makeRotation;
function isZero(v) {
return v[0] === 0 && v[1] === 0 && v[2] === 0;
}
Vec3.isZero = isZero;
/** Project `point` onto `vector` starting from `origin` */
function projectPointOnVector(out, point, vector, origin) {
sub(out, point, origin);
var scalar = dot(vector, out) / squaredMagnitude(vector);
return add(out, scale(out, vector, scalar), origin);
}
Vec3.projectPointOnVector = projectPointOnVector;
var tmpProjectPlane = zero();
/** Project `point` onto `plane` defined by `normal` starting from `origin` */
function projectPointOnPlane(out, point, normal, origin) {
normalize(tmpProjectPlane, normal);
sub(out, point, origin);
return sub(out, point, scale(tmpProjectPlane, tmpProjectPlane, dot(out, tmpProjectPlane)));
}
Vec3.projectPointOnPlane = projectPointOnPlane;
function projectOnVector(out, p, vector) {
var scalar = dot(vector, p) / squaredMagnitude(vector);
return scale(out, vector, scalar);
}
Vec3.projectOnVector = projectOnVector;
var tmpProject = zero();
function projectOnPlane(out, p, normal) {
projectOnVector(tmpProject, p, normal);
return sub(out, p, tmpProject);
}
Vec3.projectOnPlane = projectOnPlane;
/** Get a vector that is similar to `b` but orthogonal to `a` */
function orthogonalize(out, a, b) {
return normalize(out, cross(out, cross(out, a, b), a));
}
Vec3.orthogonalize = orthogonalize;
/**
* Get a vector like `a` that point into the same general direction as `b`,
* i.e. where the dot product is > 0
*/
function matchDirection(out, a, b) {
if (dot(a, b) > 0)
copy(out, a);
else
negate(out, copy(out, a));
return out;
}
Vec3.matchDirection = matchDirection;
var triangleNormalTmpAB = zero();
var triangleNormalTmpAC = zero();
/** Calculate normal for the triangle defined by `a`, `b` and `c` */
function triangleNormal(out, a, b, c) {
sub(triangleNormalTmpAB, b, a);
sub(triangleNormalTmpAC, c, a);
return normalize(out, cross(out, triangleNormalTmpAB, triangleNormalTmpAC));
}
Vec3.triangleNormal = triangleNormal;
function toString(a, precision) {
return "[" + a[0].toPrecision(precision) + " " + a[1].toPrecision(precision) + " " + a[2].toPrecision(precision) + "]";
}
Vec3.toString = toString;
Vec3.origin = create(0, 0, 0);
Vec3.unit = create(1, 1, 1);
Vec3.negUnit = create(-1, -1, -1);
Vec3.unitX = create(1, 0, 0);
Vec3.unitY = create(0, 1, 0);
Vec3.unitZ = create(0, 0, 1);
Vec3.negUnitX = create(-1, 0, 0);
Vec3.negUnitY = create(0, -1, 0);
Vec3.negUnitZ = create(0, 0, -1);
})(Vec3 || (Vec3 = {}));
export { Vec3 };
//# sourceMappingURL=vec3.js.map