molstar
Version:
A comprehensive macromolecular library.
2 lines • 9.29 kB
JavaScript
export var fxaa_frag = "\nprecision highp float;\nprecision highp int;\nprecision highp sampler2D;\n\nuniform sampler2D tColor;\nuniform vec2 uTexSizeInv;\n\n// adapted from https://github.com/kosua20/Rendu\n// MIT License Copyright (c) 2017 Simon Rodriguez\n\n#define QUALITY(q) ((q) < 5 ? 1.0 : ((q) > 5 ? ((q) < 10 ? 2.0 : ((q) < 11 ? 4.0 : 8.0)) : 1.5))\n\nfloat rgb2luma(vec3 rgb){\n return sqrt(dot(rgb, vec3(0.299, 0.587, 0.114)));\n}\n\nfloat sampleLuma(vec2 uv) {\n return rgb2luma(texture2D(tColor, uv).rgb);\n}\n\nfloat sampleLuma(vec2 uv, float uOffset, float vOffset) {\n uv += uTexSizeInv * vec2(uOffset, vOffset);\n return sampleLuma(uv);\n}\n\nvoid main(void) {\n vec2 coords = gl_FragCoord.xy * uTexSizeInv;\n vec2 inverseScreenSize = uTexSizeInv;\n\n vec4 colorCenter = texture2D(tColor, coords);\n\n // Luma at the current fragment\n float lumaCenter = rgb2luma(colorCenter.rgb);\n\n // Luma at the four direct neighbours of the current fragment.\n float lumaDown = sampleLuma(coords, 0.0, -1.0);\n float lumaUp = sampleLuma(coords, 0.0, 1.0);\n float lumaLeft = sampleLuma(coords, -1.0, 0.0);\n float lumaRight = sampleLuma(coords, 1.0, 0.0);\n\n // Find the maximum and minimum luma around the current fragment.\n float lumaMin = min(lumaCenter, min(min(lumaDown, lumaUp), min(lumaLeft, lumaRight)));\n float lumaMax = max(lumaCenter, max(max(lumaDown, lumaUp), max(lumaLeft, lumaRight)));\n\n // Compute the delta.\n float lumaRange = lumaMax - lumaMin;\n\n // If the luma variation is lower that a threshold (or if we are in a really dark area),\n // we are not on an edge, don't perform any AA.\n if (lumaRange < max(dEdgeThresholdMin, lumaMax * dEdgeThresholdMax)) {\n gl_FragColor = colorCenter;\n return;\n }\n\n // Query the 4 remaining corners lumas.\n float lumaDownLeft = sampleLuma(coords, -1.0, -1.0);\n float lumaUpRight = sampleLuma(coords, 1.0, 1.0);\n float lumaUpLeft = sampleLuma(coords, -1.0, 1.0);\n float lumaDownRight = sampleLuma(coords, 1.0, -1.0);\n\n // Combine the four edges lumas (using intermediary variables for future computations\n // with the same values).\n float lumaDownUp = lumaDown + lumaUp;\n float lumaLeftRight = lumaLeft + lumaRight;\n\n // Same for corners\n float lumaLeftCorners = lumaDownLeft + lumaUpLeft;\n float lumaDownCorners = lumaDownLeft + lumaDownRight;\n float lumaRightCorners = lumaDownRight + lumaUpRight;\n float lumaUpCorners = lumaUpRight + lumaUpLeft;\n\n // Compute an estimation of the gradient along the horizontal and vertical axis.\n float edgeHorizontal = abs(-2.0 * lumaLeft + lumaLeftCorners) + abs(-2.0 * lumaCenter + lumaDownUp) * 2.0 + abs(-2.0 * lumaRight + lumaRightCorners);\n float edgeVertical = abs(-2.0 * lumaUp + lumaUpCorners) + abs(-2.0 * lumaCenter + lumaLeftRight) * 2.0 + abs(-2.0 * lumaDown + lumaDownCorners);\n\n // Is the local edge horizontal or vertical ?\n bool isHorizontal = (edgeHorizontal >= edgeVertical);\n\n // Choose the step size (one pixel) accordingly.\n float stepLength = isHorizontal ? inverseScreenSize.y : inverseScreenSize.x;\n\n // Select the two neighboring texels lumas in the opposite direction to the local edge.\n float luma1 = isHorizontal ? lumaDown : lumaLeft;\n float luma2 = isHorizontal ? lumaUp : lumaRight;\n // Compute gradients in this direction.\n float gradient1 = luma1 - lumaCenter;\n float gradient2 = luma2 - lumaCenter;\n\n // Which direction is the steepest ?\n bool is1Steepest = abs(gradient1) >= abs(gradient2);\n\n // Gradient in the corresponding direction, normalized.\n float gradientScaled = 0.25 * max(abs(gradient1), abs(gradient2));\n\n // Average luma in the correct direction.\n float lumaLocalAverage = 0.0;\n if(is1Steepest){\n // Switch the direction\n stepLength = -stepLength;\n lumaLocalAverage = 0.5 * (luma1 + lumaCenter);\n } else {\n lumaLocalAverage = 0.5 * (luma2 + lumaCenter);\n }\n\n // Shift UV in the correct direction by half a pixel.\n vec2 currentUv = coords;\n if(isHorizontal){\n currentUv.y += stepLength * 0.5;\n } else {\n currentUv.x += stepLength * 0.5;\n }\n\n // Compute offset (for each iteration step) in the right direction.\n vec2 offset = isHorizontal ? vec2(inverseScreenSize.x, 0.0) : vec2(0.0, inverseScreenSize.y);\n // Compute UVs to explore on each side of the edge, orthogonally.\n // The QUALITY allows us to step faster.\n vec2 uv1 = currentUv - offset * QUALITY(0);\n vec2 uv2 = currentUv + offset * QUALITY(0);\n\n // Read the lumas at both current extremities of the exploration segment,\n // and compute the delta wrt to the local average luma.\n float lumaEnd1 = sampleLuma(uv1);\n float lumaEnd2 = sampleLuma(uv2);\n lumaEnd1 -= lumaLocalAverage;\n lumaEnd2 -= lumaLocalAverage;\n\n // If the luma deltas at the current extremities is larger than the local gradient,\n // we have reached the side of the edge.\n bool reached1 = abs(lumaEnd1) >= gradientScaled;\n bool reached2 = abs(lumaEnd2) >= gradientScaled;\n bool reachedBoth = reached1 && reached2;\n\n // If the side is not reached, we continue to explore in this direction.\n if(!reached1){\n uv1 -= offset * QUALITY(1);\n }\n if(!reached2){\n uv2 += offset * QUALITY(1);\n }\n\n // If both sides have not been reached, continue to explore.\n if(!reachedBoth){\n for(int i = 2; i < dIterations; i++){\n // If needed, read luma in 1st direction, compute delta.\n if(!reached1){\n lumaEnd1 = sampleLuma(uv1);\n lumaEnd1 = lumaEnd1 - lumaLocalAverage;\n }\n // If needed, read luma in opposite direction, compute delta.\n if(!reached2){\n lumaEnd2 = sampleLuma(uv2);\n lumaEnd2 = lumaEnd2 - lumaLocalAverage;\n }\n // If the luma deltas at the current extremities is larger than the local gradient,\n // we have reached the side of the edge.\n reached1 = abs(lumaEnd1) >= gradientScaled;\n reached2 = abs(lumaEnd2) >= gradientScaled;\n reachedBoth = reached1 && reached2;\n\n // If the side is not reached, we continue to explore in this direction,\n // with a variable quality.\n if(!reached1){\n uv1 -= offset * QUALITY(i);\n }\n if(!reached2){\n uv2 += offset * QUALITY(i);\n }\n\n // If both sides have been reached, stop the exploration.\n if(reachedBoth){\n break;\n }\n }\n }\n\n // Compute the distances to each side edge of the edge (!).\n float distance1 = isHorizontal ? (coords.x - uv1.x) : (coords.y - uv1.y);\n float distance2 = isHorizontal ? (uv2.x - coords.x) : (uv2.y - coords.y);\n\n // In which direction is the side of the edge closer ?\n bool isDirection1 = distance1 < distance2;\n float distanceFinal = min(distance1, distance2);\n\n // Thickness of the edge.\n float edgeThickness = (distance1 + distance2);\n\n // Is the luma at center smaller than the local average ?\n bool isLumaCenterSmaller = lumaCenter < lumaLocalAverage;\n\n // If the luma at center is smaller than at its neighbour,\n // the delta luma at each end should be positive (same variation).\n bool correctVariation1 = (lumaEnd1 < 0.0) != isLumaCenterSmaller;\n bool correctVariation2 = (lumaEnd2 < 0.0) != isLumaCenterSmaller;\n\n // Only keep the result in the direction of the closer side of the edge.\n bool correctVariation = isDirection1 ? correctVariation1 : correctVariation2;\n\n // UV offset: read in the direction of the closest side of the edge.\n float pixelOffset = - distanceFinal / edgeThickness + 0.5;\n\n // If the luma variation is incorrect, do not offset.\n float finalOffset = correctVariation ? pixelOffset : 0.0;\n\n // Sub-pixel shifting\n // Full weighted average of the luma over the 3x3 neighborhood.\n float lumaAverage = (1.0 / 12.0) * (2.0 * (lumaDownUp + lumaLeftRight) + lumaLeftCorners + lumaRightCorners);\n // Ratio of the delta between the global average and the center luma,\n // over the luma range in the 3x3 neighborhood.\n float subPixelOffset1 = clamp(abs(lumaAverage - lumaCenter) / lumaRange, 0.0, 1.0);\n float subPixelOffset2 = (-2.0 * subPixelOffset1 + 3.0) * subPixelOffset1 * subPixelOffset1;\n // Compute a sub-pixel offset based on this delta.\n float subPixelOffsetFinal = subPixelOffset2 * subPixelOffset2 * float(dSubpixelQuality);\n\n // Pick the biggest of the two offsets.\n finalOffset = max(finalOffset, subPixelOffsetFinal);\n\n // Compute the final UV coordinates.\n vec2 finalUv = coords;\n if(isHorizontal){\n finalUv.y += finalOffset * stepLength;\n } else {\n finalUv.x += finalOffset * stepLength;\n }\n\n // Read the color at the new UV coordinates, and use it.\n gl_FragColor = texture2D(tColor, finalUv);\n}\n";
//# sourceMappingURL=fxaa.frag.js.map