UNPKG

molstar

Version:

A comprehensive macromolecular library.

261 lines 13.4 kB
/** * Copyright (c) 2021 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author Alexander Rose <alexander.rose@weirdbyte.de> */ import { __assign } from "tslib"; import { ValueCell } from '../../../mol-util'; import { createComputeRenderable } from '../../../mol-gl/renderable'; import { ShaderCode } from '../../../mol-gl/shader-code'; import { createComputeRenderItem } from '../../../mol-gl/webgl/render-item'; import { ValueSpec, AttributeSpec, UniformSpec, TextureSpec, DefineSpec } from '../../../mol-gl/renderable/schema'; import { quad_vert } from '../../../mol-gl/shader/quad.vert'; import { normalize_frag } from '../../../mol-gl/shader/compute/color-smoothing/normalize.frag'; import { QuadSchema, QuadValues } from '../../../mol-gl/compute/util'; import { Vec2, Vec3, Vec4 } from '../../../mol-math/linear-algebra'; import { Box3D } from '../../../mol-math/geometry'; import { accumulate_frag } from '../../../mol-gl/shader/compute/color-smoothing/accumulate.frag'; import { accumulate_vert } from '../../../mol-gl/shader/compute/color-smoothing/accumulate.vert'; export var ColorAccumulateSchema = { drawCount: ValueSpec('number'), instanceCount: ValueSpec('number'), stride: ValueSpec('number'), uTotalCount: UniformSpec('i'), uInstanceCount: UniformSpec('i'), uGroupCount: UniformSpec('i'), aTransform: AttributeSpec('float32', 16, 1), aInstance: AttributeSpec('float32', 1, 1), aSample: AttributeSpec('float32', 1, 0), uGeoTexDim: UniformSpec('v2', 'buffered'), tPosition: TextureSpec('texture', 'rgba', 'float', 'nearest'), tGroup: TextureSpec('texture', 'rgba', 'float', 'nearest'), uColorTexDim: UniformSpec('v2'), tColor: TextureSpec('image-uint8', 'rgb', 'ubyte', 'nearest'), dColorType: DefineSpec('string', ['group', 'groupInstance', 'vertex', 'vertexInstance']), uCurrentSlice: UniformSpec('f'), uCurrentX: UniformSpec('f'), uCurrentY: UniformSpec('f'), uBboxMin: UniformSpec('v3', 'material'), uBboxSize: UniformSpec('v3', 'material'), uResolution: UniformSpec('f', 'material'), }; var ColorAccumulateName = 'color-accumulate'; function getSampleBuffer(sampleCount, stride) { var sampleBuffer = new Float32Array(sampleCount); for (var i = 0; i < sampleCount; ++i) { sampleBuffer[i] = i * stride; } return sampleBuffer; } function getAccumulateRenderable(ctx, input, box, resolution, stride) { if (ctx.namedComputeRenderables[ColorAccumulateName]) { var extent = Vec3.sub(Vec3(), box.max, box.min); var v = ctx.namedComputeRenderables[ColorAccumulateName].values; var sampleCount = Math.round(input.vertexCount / stride); if (sampleCount > v.drawCount.ref.value || stride !== v.stride.ref.value) { ValueCell.update(v.aSample, getSampleBuffer(sampleCount, stride)); } ValueCell.updateIfChanged(v.drawCount, sampleCount); ValueCell.updateIfChanged(v.instanceCount, input.instanceCount); ValueCell.updateIfChanged(v.stride, stride); ValueCell.updateIfChanged(v.uTotalCount, input.vertexCount); ValueCell.updateIfChanged(v.uInstanceCount, input.instanceCount); ValueCell.updateIfChanged(v.uGroupCount, input.groupCount); ValueCell.update(v.aTransform, input.transformBuffer); ValueCell.update(v.aInstance, input.instanceBuffer); ValueCell.update(v.uGeoTexDim, Vec2.set(v.uGeoTexDim.ref.value, input.positionTexture.getWidth(), input.positionTexture.getHeight())); ValueCell.update(v.tPosition, input.positionTexture); ValueCell.update(v.tGroup, input.groupTexture); ValueCell.update(v.uColorTexDim, Vec2.set(v.uColorTexDim.ref.value, input.colorData.width, input.colorData.height)); ValueCell.update(v.tColor, input.colorData); ValueCell.updateIfChanged(v.dColorType, input.colorType); ValueCell.updateIfChanged(v.uCurrentSlice, 0); ValueCell.updateIfChanged(v.uCurrentX, 0); ValueCell.updateIfChanged(v.uCurrentY, 0); ValueCell.update(v.uBboxMin, box.min); ValueCell.update(v.uBboxSize, extent); ValueCell.updateIfChanged(v.uResolution, resolution); ctx.namedComputeRenderables[ColorAccumulateName].update(); } else { ctx.namedComputeRenderables[ColorAccumulateName] = createAccumulateRenderable(ctx, input, box, resolution, stride); } return ctx.namedComputeRenderables[ColorAccumulateName]; } function createAccumulateRenderable(ctx, input, box, resolution, stride) { var extent = Vec3.sub(Vec3(), box.max, box.min); var sampleCount = Math.round(input.vertexCount / stride); var values = { drawCount: ValueCell.create(sampleCount), instanceCount: ValueCell.create(input.instanceCount), stride: ValueCell.create(stride), uTotalCount: ValueCell.create(input.vertexCount), uInstanceCount: ValueCell.create(input.instanceCount), uGroupCount: ValueCell.create(input.groupCount), aTransform: ValueCell.create(input.transformBuffer), aInstance: ValueCell.create(input.instanceBuffer), aSample: ValueCell.create(getSampleBuffer(sampleCount, stride)), uGeoTexDim: ValueCell.create(Vec2.create(input.positionTexture.getWidth(), input.positionTexture.getHeight())), tPosition: ValueCell.create(input.positionTexture), tGroup: ValueCell.create(input.groupTexture), uColorTexDim: ValueCell.create(Vec2.create(input.colorData.width, input.colorData.height)), tColor: ValueCell.create(input.colorData), dColorType: ValueCell.create(input.colorType), uCurrentSlice: ValueCell.create(0), uCurrentX: ValueCell.create(0), uCurrentY: ValueCell.create(0), uBboxMin: ValueCell.create(box.min), uBboxSize: ValueCell.create(extent), uResolution: ValueCell.create(resolution), }; var schema = __assign({}, ColorAccumulateSchema); var shaderCode = ShaderCode('accumulate', accumulate_vert, accumulate_frag); var renderItem = createComputeRenderItem(ctx, 'points', shaderCode, schema, values); return createComputeRenderable(renderItem, values); } function setAccumulateDefaults(ctx) { var gl = ctx.gl, state = ctx.state; state.disable(gl.CULL_FACE); state.enable(gl.BLEND); state.disable(gl.DEPTH_TEST); state.enable(gl.SCISSOR_TEST); state.depthMask(false); state.clearColor(0, 0, 0, 0); state.blendFunc(gl.ONE, gl.ONE); state.blendEquation(gl.FUNC_ADD); } // export var ColorNormalizeSchema = __assign(__assign({}, QuadSchema), { tColor: TextureSpec('texture', 'rgba', 'float', 'nearest'), uTexSize: UniformSpec('v2') }); var ColorNormalizeName = 'color-normalize'; function getNormalizeRenderable(ctx, color) { if (ctx.namedComputeRenderables[ColorNormalizeName]) { var v = ctx.namedComputeRenderables[ColorNormalizeName].values; ValueCell.update(v.tColor, color); ValueCell.update(v.uTexSize, Vec2.set(v.uTexSize.ref.value, color.getWidth(), color.getHeight())); ctx.namedComputeRenderables[ColorNormalizeName].update(); } else { ctx.namedComputeRenderables[ColorNormalizeName] = createColorNormalizeRenderable(ctx, color); } return ctx.namedComputeRenderables[ColorNormalizeName]; } function createColorNormalizeRenderable(ctx, color) { var values = __assign(__assign({}, QuadValues), { tColor: ValueCell.create(color), uTexSize: ValueCell.create(Vec2.create(color.getWidth(), color.getHeight())) }); var schema = __assign({}, ColorNormalizeSchema); var shaderCode = ShaderCode('normalize', quad_vert, normalize_frag); var renderItem = createComputeRenderItem(ctx, 'triangles', shaderCode, schema, values); return createComputeRenderable(renderItem, values); } function setNormalizeDefaults(ctx) { var gl = ctx.gl, state = ctx.state; state.disable(gl.CULL_FACE); state.enable(gl.BLEND); state.disable(gl.DEPTH_TEST); state.enable(gl.SCISSOR_TEST); state.depthMask(false); state.clearColor(0, 0, 0, 0); state.blendFunc(gl.ONE, gl.ONE); state.blendEquation(gl.FUNC_ADD); } // function getTexture2dSize(gridDim) { var area = gridDim[0] * gridDim[1] * gridDim[2]; var squareDim = Math.sqrt(area); var powerOfTwoSize = Math.pow(2, Math.ceil(Math.log(squareDim) / Math.log(2))); var texDimX = 0; var texDimY = gridDim[1]; var texRows = 1; var texCols = gridDim[2]; if (powerOfTwoSize < gridDim[0] * gridDim[2]) { texCols = Math.floor(powerOfTwoSize / gridDim[0]); texRows = Math.ceil(gridDim[2] / texCols); texDimX = texCols * gridDim[0]; texDimY *= texRows; } else { texDimX = gridDim[0] * gridDim[2]; } // console.log(texDimX, texDimY, texDimY < powerOfTwoSize ? powerOfTwoSize : powerOfTwoSize * 2); return { texDimX: texDimX, texDimY: texDimY, texRows: texRows, texCols: texCols, powerOfTwoSize: texDimY < powerOfTwoSize ? powerOfTwoSize : powerOfTwoSize * 2 }; } export function calcTextureMeshColorSmoothing(input, resolution, stride, webgl, texture) { var gl = webgl.gl, resources = webgl.resources, state = webgl.state, _a = webgl.extensions, colorBufferHalfFloat = _a.colorBufferHalfFloat, textureHalfFloat = _a.textureHalfFloat; var isInstanceType = input.colorType.endsWith('Instance'); var box = Box3D.fromSphere3D(Box3D(), isInstanceType ? input.boundingSphere : input.invariantBoundingSphere); var scaleFactor = 1 / resolution; var scaledBox = Box3D.scale(Box3D(), box, scaleFactor); var gridDim = Box3D.size(Vec3(), scaledBox); Vec3.ceil(gridDim, gridDim); Vec3.add(gridDim, gridDim, Vec3.create(2, 2, 2)); var min = box.min; var dx = gridDim[0], dy = gridDim[1], dz = gridDim[2]; var _b = getTexture2dSize(gridDim), width = _b.texDimX, height = _b.texDimY, texCols = _b.texCols; // console.log({ width, height, texCols, dim, resolution }); if (!webgl.namedTextures[ColorAccumulateName]) { webgl.namedTextures[ColorAccumulateName] = colorBufferHalfFloat && textureHalfFloat ? resources.texture('image-float16', 'rgba', 'fp16', 'nearest') : resources.texture('image-float32', 'rgba', 'float', 'nearest'); } var accumulateTexture = webgl.namedTextures[ColorAccumulateName]; accumulateTexture.define(width, height); var accumulateRenderable = getAccumulateRenderable(webgl, input, box, resolution, stride); // var _c = accumulateRenderable.values, uCurrentSlice = _c.uCurrentSlice, uCurrentX = _c.uCurrentX, uCurrentY = _c.uCurrentY; if (!webgl.namedFramebuffers[ColorAccumulateName]) { webgl.namedFramebuffers[ColorAccumulateName] = webgl.resources.framebuffer(); } var framebuffer = webgl.namedFramebuffers[ColorAccumulateName]; framebuffer.bind(); setAccumulateDefaults(webgl); state.currentRenderItemId = -1; accumulateTexture.attachFramebuffer(framebuffer, 0); gl.viewport(0, 0, width, height); gl.scissor(0, 0, width, height); gl.clear(gl.COLOR_BUFFER_BIT); ValueCell.update(uCurrentY, 0); var currCol = 0; var currY = 0; var currX = 0; for (var i = 0; i < dz; ++i) { if (currCol >= texCols) { currCol -= texCols; currY += dy; currX = 0; ValueCell.update(uCurrentY, currY); } // console.log({ i, currX, currY }); ValueCell.update(uCurrentX, currX); ValueCell.update(uCurrentSlice, i); gl.viewport(currX, currY, dx, dy); gl.scissor(currX, currY, dx, dy); accumulateRenderable.render(); ++currCol; currX += dx; } // const accImage = new Float32Array(width * height * 4); // accumulateTexture.attachFramebuffer(framebuffer, 0); // webgl.readPixels(0, 0, width, height, accImage); // console.log(accImage); // printTextureImage({ array: accImage, width, height }, 1 / 4); // normalize if (!texture) texture = resources.texture('image-uint8', 'rgb', 'ubyte', 'linear'); texture.define(width, height); var normalizeRenderable = getNormalizeRenderable(webgl, accumulateTexture); setNormalizeDefaults(webgl); state.currentRenderItemId = -1; texture.attachFramebuffer(framebuffer, 0); gl.viewport(0, 0, width, height); gl.scissor(0, 0, width, height); gl.clear(gl.COLOR_BUFFER_BIT); normalizeRenderable.render(); // const normImage = new Uint8Array(width * height * 4); // texture.attachFramebuffer(framebuffer, 0); // webgl.readPixels(0, 0, width, height, normImage); // console.log(normImage); // printTextureImage({ array: normImage, width, height }, 1 / 4); var gridTransform = Vec4.create(min[0], min[1], min[2], scaleFactor); var type = isInstanceType ? 'volumeInstance' : 'volume'; return { texture: texture, gridDim: gridDim, gridTexDim: Vec2.create(width, height), gridTransform: gridTransform, type: type }; } //# sourceMappingURL=color-smoothing.js.map