UNPKG

molstar

Version:

A comprehensive macromolecular library.

396 lines 12.3 kB
/** * Copyright (c) 2017-2019 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author David Sehnal <david.sehnal@gmail.com> */ import { SortedArray as S } from '../sorted-array'; import { Interval as I } from '../interval'; export var Empty = I.Empty; export var ofSingleton = I.ofSingleton; export var ofRange = I.ofRange; export var ofBounds = I.ofBounds; export function ofSortedArray(xs) { if (!xs.length) return Empty; // check if the array is just a range if (S.isRange(xs)) return I.ofRange(xs[0], xs[xs.length - 1]); return xs; } export function size(set) { return I.is(set) ? I.size(set) : S.size(set); } export function has(set, x) { return I.is(set) ? I.has(set, x) : S.has(set, x); } /** Returns the index of `x` in `set` or -1 if not found. */ export function indexOf(set, x) { return I.is(set) ? I.indexOf(set, x) : S.indexOf(set, x); } export function getAt(set, i) { return I.is(set) ? I.getAt(set, i) : set[i]; } export function min(set) { return I.is(set) ? I.min(set) : S.min(set); } export function max(set) { return I.is(set) ? I.max(set) : S.max(set); } export function start(set) { return I.is(set) ? I.start(set) : S.start(set); } export function end(set) { return I.is(set) ? I.end(set) : S.end(set); } export function hashCode(set) { return I.is(set) ? I.hashCode(set) : S.hashCode(set); } // TODO: possibly add more hash functions to allow for multilevel hashing. export function toString(set) { return I.is(set) ? I.toString(set) : S.toString(set); } export function areEqual(a, b) { if (I.is(a)) { if (I.is(b)) return I.areEqual(a, b); return areEqualIS(a, b); } else if (I.is(b)) return areEqualIS(b, a); return S.areEqual(a, b); } export function areIntersecting(a, b) { if (I.is(a)) { if (I.is(b)) return I.areIntersecting(a, b); return areIntersectingSI(b, a); } else if (I.is(b)) return areIntersectingSI(a, b); return S.areIntersecting(a, b); } /** Check if the 2nd argument is a subset of the 1st */ export function isSubset(a, b) { if (I.is(a)) { if (I.is(b)) return I.isSubInterval(a, b); return isSubsetIS(a, b); } else if (I.is(b)) return isSubsetSI(a, b); return S.isSubset(a, b); } export function findPredecessorIndex(set, x) { return I.is(set) ? I.findPredecessorIndex(set, x) : S.findPredecessorIndex(set, x); } export function findPredecessorIndexInInterval(set, x, bounds) { return I.is(set) ? I.findPredecessorIndexInInterval(set, x, bounds) : S.findPredecessorIndexInInterval(set, x, bounds); } export function findRange(set, min, max) { return I.is(set) ? I.findRange(set, min, max) : S.findRange(set, min, max); } export function intersectionSize(a, b) { if (I.is(a)) { if (I.is(b)) return I.intersectionSize(a, b); return intersectionSizeSI(b, a); } else if (I.is(b)) return intersectionSizeSI(a, b); return S.intersectionSize(a, b); } export function union(a, b) { if (I.is(a)) { if (I.is(b)) return unionII(a, b); return unionSI(b, a); } else if (I.is(b)) return unionSI(a, b); return ofSortedArray(S.union(a, b)); } export function intersect(a, b) { if (I.is(a)) { if (I.is(b)) return I.intersect(a, b); return intersectSI(b, a); } else if (I.is(b)) return intersectSI(a, b); return ofSortedArray(S.intersect(a, b)); } export function subtract(a, b) { if (I.is(a)) { if (I.is(b)) return subtractII(a, b); return subtractIS(a, b); } else if (I.is(b)) return subtractSI(a, b); return ofSortedArray(S.subtract(a, b)); } function areEqualIS(a, b) { return I.size(a) === S.size(b) && I.start(a) === S.start(b) && I.end(a) === S.end(b); } function areIntersectingSI(a, b) { return a.length !== 0 && I.size(S.findRange(a, I.min(b), I.max(b))) !== 0; } function isSubsetSI(a, b) { var minB = I.min(b), maxB = I.max(b); if (maxB - minB + 1 === 0) return true; var minA = S.min(a), maxA = S.max(a); if (minB < minA || maxB > maxA) return false; var r = S.findRange(a, minB, maxB); return I.size(r) === I.size(b); } function isSubsetIS(a, b) { var minA = I.min(a), maxA = I.max(a); if (maxA - minA + 1 === 0) return false; var minB = S.min(b), maxB = S.max(b); return minB >= minA && maxB <= maxA; } function areRangesIntersecting(a, b) { var sa = size(a), sb = size(b); if (sa === 0 && sb === 0) return true; return sa > 0 && sb > 0 && max(a) >= min(b) && min(a) <= max(b); } function isRangeSubset(a, b) { if (!size(a)) return size(b) === 0; if (!size(b)) return true; return min(a) <= min(b) && max(a) >= max(b); } function unionII(a, b) { if (I.areEqual(a, b)) return a; var sizeA = I.size(a), sizeB = I.size(b); if (!sizeB) return a; if (!sizeA) return b; var minA = I.min(a), minB = I.min(b); if (areRangesIntersecting(a, b)) return I.ofRange(Math.min(minA, minB), Math.max(I.max(a), I.max(b))); var lSize, lMin, rSize, rMin; if (minA < minB) { lSize = sizeA; lMin = minA; rSize = sizeB; rMin = minB; } else { lSize = sizeB; lMin = minB; rSize = sizeA; rMin = minA; } var arr = new Int32Array(sizeA + sizeB); for (var i = 0; i < lSize; i++) arr[i] = i + lMin; for (var i = 0; i < rSize; i++) arr[i + lSize] = i + rMin; return ofSortedArray(arr); } function unionSI(a, b) { var bSize = I.size(b); if (!bSize) return a; // is the array fully contained in the range? if (isRangeSubset(b, a)) return b; var min = I.min(b), max = I.max(b); var r = S.findRange(a, min, max); var start = I.start(r), end = I.end(r); var indices = new Int32Array(start + (a.length - end) + bSize); var offset = 0; for (var i = 0; i < start; i++) indices[offset++] = a[i]; for (var i = min; i <= max; i++) indices[offset++] = i; for (var i = end, _i = a.length; i < _i; i++) indices[offset++] = a[i]; return ofSortedArray(indices); } function intersectionSizeSI(a, b) { if (!I.size(b)) return 0; var r = S.findRange(a, I.min(b), I.max(b)); return I.end(r) - I.start(r); } function intersectSI(a, b) { if (!I.size(b)) return Empty; var r = S.findRange(a, I.min(b), I.max(b)); var start = I.start(r), end = I.end(r); var resultSize = end - start; if (!resultSize) return Empty; if (resultSize === a.length) return a; var indices = new Int32Array(resultSize); var offset = 0; for (var i = start; i < end; i++) { indices[offset++] = a[i]; } return ofSortedArray(indices); } function subtractII(a, b) { if (I.areEqual(a, b)) return Empty; if (!I.areIntersecting(a, b)) return a; var minA = I.min(a), maxA = I.max(a); var minB = I.min(b), maxB = I.max(b); if (maxA < minA || maxB < minB) return a; // is A subset of B? ==> Empty if (I.isSubInterval(b, a)) return Empty; if (I.isSubInterval(a, b)) { // this splits the interval into two, gotta represent it as a set. var l = minB - minA, r = maxA - maxB; if (l <= 0) return I.ofRange(maxB + 1, maxB + r); if (r <= 0) return I.ofRange(minA, minA + l - 1); var ret = new Int32Array(l + r); var offset = 0; for (var i = 0; i < l; i++) ret[offset++] = minA + i; for (var i = 1; i <= r; i++) ret[offset++] = maxB + i; return ofSortedArray(ret); } if (minA < minB) return I.ofRange(minA, minB - 1); return I.ofRange(maxB + 1, maxA); } function subtractSI(a, b) { var min = I.min(b), max = I.max(b); // is empty? if (max < min) return a; var r = S.findRange(a, min, max); var start = I.start(r), end = I.end(r); var resultSize = a.length - (end - start); // A is subset of B if (resultSize <= 0) return Empty; // No common elements if (resultSize === a.length) return a; var ret = new Int32Array(resultSize); var offset = 0; for (var i = 0; i < start; i++) ret[offset++] = a[i]; for (var i = end, _i = a.length; i < _i; i++) ret[offset++] = a[i]; return ofSortedArray(ret); } function subtractIS(a, b) { var min = I.min(a), max = I.max(a); // is empty? if (max < min) return a; var rSize = max - min + 1; var interval = S.findRange(b, min, max); var start = I.start(interval), end = I.end(interval); var commonCount = end - start; // No common elements. if (commonCount === 0) return a; var resultSize = rSize - commonCount; // A is subset of B if (resultSize <= 0) return Empty; var ret = new Int32Array(resultSize); var li = b.length - 1; var fst = b[Math.min(start, li)], last = b[Math.min(end, li)]; var offset = 0; for (var i = min; i < fst; i++) ret[offset++] = i; for (var i = fst; i <= last; i++) { if (S.indexOfInInterval(b, i, interval) < 0) ret[offset++] = i; } for (var i = last + 1; i <= max; i++) ret[offset++] = i; return ofSortedArray(ret); } export function forEach(set, f, ctx) { if (I.is(set)) { var start_1 = I.min(set); for (var i = start_1, _i = I.max(set); i <= _i; i++) { f(i, i - start_1, ctx); } } else { for (var i = 0, _i = set.length; i < _i; i++) { f(set[i], i, ctx); } } return ctx; } export function forEachSegment(set, segment, f, ctx) { if (I.is(set)) { var sI = 0; for (var i = I.min(set), _i = I.max(set); i <= _i; i++) { var s = segment(i); var endI = i + 1; while (endI < _i && segment(endI) === s) endI++; i = endI - 1; f(s, sI, ctx); sI++; } } else { var sI = 0; for (var i = 0, _i = set.length; i < _i; i++) { var s = segment(set[i]); var endI = i + 1; while (endI < _i && segment(set[endI]) === s) endI++; i = endI - 1; f(s, sI, ctx); sI++; } } return ctx; } export function indexedIntersect(idxA, a, b) { if (a === b) return idxA; var lenI = size(idxA), lenA = a.length, lenB = b.length; if (lenI === 0 || lenA === 0 || lenB === 0) return Empty; var startJ = S.findPredecessorIndex(b, a[min(idxA)]); var endJ = S.findPredecessorIndex(b, a[max(idxA)] + 1); var commonCount = 0; var offset = 0; var O = 0; var j = startJ; while (O < lenI && j < endJ) { var x = a[getAt(idxA, O)], y = b[j]; if (x < y) { O++; } else if (x > y) { j++; } else { commonCount++; O++; j++; } } // no common elements if (commonCount === 0) return Empty; // A === B if (commonCount === lenA && commonCount === lenB) return idxA; var indices = new Int32Array(commonCount); offset = 0; O = 0; j = startJ; while (O < lenI && j < endJ) { var x = a[getAt(idxA, O)], y = b[j]; if (x < y) { O++; } else if (x > y) { j++; } else { indices[offset++] = j; O++; j++; } } return ofSortedArray(indices); } //# sourceMappingURL=ordered-set.js.map