UNPKG

molstar

Version:

A comprehensive macromolecular library.

67 lines 4.24 kB
"use strict"; /** * Copyright (c) 2019-2020 mol* contributors, licensed under MIT, See LICENSE file for more info. * * @author Alexander Rose <alexander.rose@weirdbyte.de> */ Object.defineProperty(exports, "__esModule", { value: true }); exports.coordinatesFromDcd = void 0; var tslib_1 = require("tslib"); var mol_task_1 = require("../../mol-task"); var coordinates_1 = require("../../mol-model/structure/coordinates"); var linear_algebra_1 = require("../../mol-math/linear-algebra"); var misc_1 = require("../../mol-math/misc"); var cell_1 = require("../../mol-math/geometry/spacegroup/cell"); var common_1 = require("../../mol-math/linear-algebra/3d/common"); var charmmTimeUnitFactor = 20.45482949774598; function coordinatesFromDcd(dcdFile) { var _this = this; return mol_task_1.Task.create('Parse DCD', function (ctx) { return (0, tslib_1.__awaiter)(_this, void 0, void 0, function () { var header, deltaTime, offsetTime, frames, i, il, dcdFrame, frame, c; return (0, tslib_1.__generator)(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, ctx.update('Converting to coordinates')]; case 1: _a.sent(); header = dcdFile.header; deltaTime = header.DELTA ? (0, coordinates_1.Time)(header.DELTA * charmmTimeUnitFactor, 'ps') : (0, coordinates_1.Time)(1, 'step'); offsetTime = header.ISTART >= 1 ? (0, coordinates_1.Time)((header.ISTART - 1) * deltaTime.value, deltaTime.unit) : (0, coordinates_1.Time)(0, deltaTime.unit); frames = []; for (i = 0, il = dcdFile.frames.length; i < il; ++i) { dcdFrame = dcdFile.frames[i]; frame = { elementCount: dcdFrame.elementCount, time: (0, coordinates_1.Time)(offsetTime.value + deltaTime.value * i, deltaTime.unit), x: dcdFrame.x, y: dcdFrame.y, z: dcdFrame.z, xyzOrdering: { isIdentity: true } }; if (dcdFrame.cell) { c = dcdFrame.cell; if (c[1] >= -1 && c[1] <= 1 && c[3] >= -1 && c[3] <= 1 && c[4] >= -1 && c[4] <= 1) { frame.cell = cell_1.Cell.create(linear_algebra_1.Vec3.create(c[0], c[2], c[5]), linear_algebra_1.Vec3.create((0, misc_1.degToRad)(90 - Math.asin(c[1]) * 90 / misc_1.halfPI), (0, misc_1.degToRad)(90 - Math.asin(c[3]) * 90 / misc_1.halfPI), (0, misc_1.degToRad)(90 - Math.asin(c[4]) * 90 / misc_1.halfPI))); } else if (c[0] < 0 || c[1] < 0 || c[2] < 0 || c[3] < 0 || c[4] < 0 || c[5] < 0 || c[3] > 180 || c[4] > 180 || c[5] > 180) { frame.cell = cell_1.Cell.fromBasis(linear_algebra_1.Vec3.create(c[0], c[1], c[3]), linear_algebra_1.Vec3.create(c[1], c[2], c[4]), linear_algebra_1.Vec3.create(c[3], c[4], c[5])); } else { frame.cell = cell_1.Cell.create(linear_algebra_1.Vec3.create(c[0], c[2], c[5]), // interpret angles very close to 0 as 90 deg linear_algebra_1.Vec3.create((0, misc_1.degToRad)((0, common_1.equalEps)(c[1], 0, common_1.EPSILON) ? 90 : c[1]), (0, misc_1.degToRad)((0, common_1.equalEps)(c[3], 0, common_1.EPSILON) ? 90 : c[3]), (0, misc_1.degToRad)((0, common_1.equalEps)(c[4], 0, common_1.EPSILON) ? 90 : c[4]))); } } frames.push(frame); } return [2 /*return*/, coordinates_1.Coordinates.create(frames, deltaTime, offsetTime)]; } }); }); }); } exports.coordinatesFromDcd = coordinatesFromDcd; //# sourceMappingURL=dcd.js.map