UNPKG

mnemos-coder

Version:

CLI-based coding agent with graph-based execution loop and terminal UI

81 lines 1.96 kB
/** * API-based embedding service for code semantic search * Uses external embedding models via REST API */ import { EmbeddingConfig } from '../config/GlobalConfig.js'; export interface EmbeddingResult { embedding: number[]; dimension: number; processingTime: number; model: string; } export interface BatchEmbeddingResult { embeddings: number[][]; dimension: number; processingTime: number; model: string; total_tokens?: number; } export interface EmbeddingRequest { input: string | string[]; model: string; encoding_format?: string; dimensions?: number; } export interface EmbeddingResponse { object: string; data: Array<{ object: string; embedding: number[]; index: number; }>; model: string; usage: { prompt_tokens: number; total_tokens: number; }; } export declare class ApiEmbedder { private config; private baseURL; private headers; constructor(config: EmbeddingConfig); /** * Generate embedding for a single text */ embed(text: string): Promise<EmbeddingResult>; /** * Generate embeddings for multiple texts (batch processing) */ embedBatch(texts: string[]): Promise<BatchEmbeddingResult>; /** * Calculate cosine similarity between two embeddings */ calculateSimilarity(embedding1: number[], embedding2: number[]): number; /** * Get embedding configuration */ getConfig(): EmbeddingConfig; /** * Test API connection */ testConnection(): Promise<{ success: boolean; message: string; latency?: number; }>; /** * Get model information */ getModelInfo(): { name: string; model: string; dimension: number; baseURL: string; }; /** * Make HTTP request to embedding API */ private makeRequest; } //# sourceMappingURL=ApiEmbedder.d.ts.map