UNPKG

ml

Version:

Machine learning tools

133 lines (117 loc) 3.48 kB
/* eslint-disable import/newline-after-import */ /* eslint-disable import/order */ /* eslint-disable import/first */ // Try to keep this list in the same structure as the README. // Unsupervised learning export { PCA } from 'ml-pca'; // Supervised learning export { default as KNN } from 'ml-knn'; export { PLS, KOPLS, OPLS, oplsNipals } from 'ml-pls'; export { ConfusionMatrix } from 'ml-confusion-matrix'; // Artificial neural networks export { default as FNN } from 'ml-fnn'; export { default as SOM } from 'ml-som'; // Regression export { SimpleLinearRegression, PolynomialRegression, MultivariateLinearRegression, PowerRegression, ExponentialRegression, TheilSenRegression, RobustPolynomialRegression, } from 'ml-regression'; // Optimization export { levenbergMarquardt } from 'ml-levenberg-marquardt'; // Math import * as MatrixLib from 'ml-matrix'; const { Matrix, SVD, EVD, CholeskyDecomposition, LuDecomposition, QrDecomposition, } = MatrixLib; export { Matrix, SVD, EVD, CholeskyDecomposition, LuDecomposition, QrDecomposition, }; export { SparseMatrix } from 'ml-sparse-matrix'; export { default as Kernel } from 'ml-kernel'; export { distance as Distance, similarity as Similarity } from 'ml-distance'; export { default as distanceMatrix } from 'ml-distance-matrix'; export { XSadd } from 'ml-xsadd'; export { nGMCA } from 'ml-ngmca'; // Statistics export { default as Performance } from 'ml-performance'; // Data preprocessing export { default as savitzkyGolay } from 'ml-savitzky-golay'; // Utility export { default as BitArray } from 'ml-bit-array'; export { default as HashTable } from 'ml-hash-table'; export { default as padArray } from 'ml-pad-array'; export { default as binarySearch } from 'binary-search'; export { Random } from 'ml-random'; import min from 'ml-array-min'; import max from 'ml-array-max'; import median from 'ml-array-median'; import mean from 'ml-array-mean'; import mode from 'ml-array-mode'; import normed from 'ml-array-normed'; import rescale from 'ml-array-rescale'; import sequentialFill from 'ml-array-sequential-fill'; import sum from 'ml-array-sum'; import standardDeviation from 'ml-array-standard-deviation'; import variance from 'ml-array-variance'; export const Array = { min, max, median, mean, mode, normed, rescale, sequentialFill, standardDeviation, sum, variance, }; import centroidsMerge from 'ml-array-xy-centroids-merge'; import closestX from 'ml-arrayxy-closestx'; import covariance from 'ml-array-xy-covariance'; import maxMerge from 'ml-array-xy-max-merge'; import maxY from 'ml-array-xy-max-y'; import sortX from 'ml-array-xy-sort-x'; import uniqueX from 'ml-arrayxy-uniquex'; import weightedMerge from 'ml-array-xy-weighted-merge'; import equallySpaced from 'ml-array-xy-equally-spaced'; import filterX from 'ml-array-xy-filter-x'; export const ArrayXY = { centroidsMerge, closestX, covariance, maxMerge, maxY, sortX, uniqueX, weightedMerge, equallySpaced, filterX, }; export { DecisionTreeClassifier, DecisionTreeRegression } from 'ml-cart'; export { RandomForestClassifier, RandomForestRegression, } from 'ml-random-forest'; export * as HClust from 'ml-hclust'; export * as KMeans from 'ml-kmeans'; export * as NaiveBayes from 'ml-naivebayes'; export * as CrossValidation from 'ml-cross-validation'; export * as FCNNLS from 'ml-fcnnls'; export * as MatrixLib from 'ml-matrix'; export * as GSD from 'ml-gsd';