UNPKG

ml

Version:

Machine learning tools

240 lines (233 loc) 7.79 kB
'use strict'; var mlPca = require('ml-pca'); var mlKnn = require('ml-knn'); var mlPls = require('ml-pls'); var mlConfusionMatrix = require('ml-confusion-matrix'); var mlFnn = require('ml-fnn'); var mlSom = require('ml-som'); var mlRegression = require('ml-regression'); var mlLevenbergMarquardt = require('ml-levenberg-marquardt'); var MatrixLib = require('ml-matrix'); var mlSparseMatrix = require('ml-sparse-matrix'); var mlKernel = require('ml-kernel'); var mlDistance = require('ml-distance'); var mlDistanceMatrix = require('ml-distance-matrix'); var mlXsadd = require('ml-xsadd'); var mlNgmca = require('ml-ngmca'); var mlPerformance = require('ml-performance'); var mlSavitzkyGolay = require('ml-savitzky-golay'); var mlBitArray = require('ml-bit-array'); var mlHashTable = require('ml-hash-table'); var mlPadArray = require('ml-pad-array'); var binarySearch = require('binary-search'); var mlRandom = require('ml-random'); var min = require('ml-array-min'); var max = require('ml-array-max'); var median = require('ml-array-median'); var mean = require('ml-array-mean'); var mode = require('ml-array-mode'); var normed = require('ml-array-normed'); var rescale = require('ml-array-rescale'); var sequentialFill = require('ml-array-sequential-fill'); var sum = require('ml-array-sum'); var standardDeviation = require('ml-array-standard-deviation'); var variance = require('ml-array-variance'); var centroidsMerge = require('ml-array-xy-centroids-merge'); var closestX = require('ml-arrayxy-closestx'); var covariance = require('ml-array-xy-covariance'); var maxMerge = require('ml-array-xy-max-merge'); var maxY = require('ml-array-xy-max-y'); var sortX = require('ml-array-xy-sort-x'); var uniqueX = require('ml-arrayxy-uniquex'); var weightedMerge = require('ml-array-xy-weighted-merge'); var equallySpaced = require('ml-array-xy-equally-spaced'); var filterX = require('ml-array-xy-filter-x'); var mlCart = require('ml-cart'); var mlRandomForest = require('ml-random-forest'); var mlHclust = require('ml-hclust'); var mlKmeans = require('ml-kmeans'); var mlNaivebayes = require('ml-naivebayes'); var mlCrossValidation = require('ml-cross-validation'); var mlFcnnls = require('ml-fcnnls'); var mlGsd = require('ml-gsd'); function _interopNamespaceDefault(e) { var n = Object.create(null); if (e) { Object.keys(e).forEach(function (k) { if (k !== 'default') { var d = Object.getOwnPropertyDescriptor(e, k); Object.defineProperty(n, k, d.get ? d : { enumerable: true, get: function () { return e[k]; } }); } }); } n.default = e; return Object.freeze(n); } var MatrixLib__namespace = /*#__PURE__*/_interopNamespaceDefault(MatrixLib); var mlHclust__namespace = /*#__PURE__*/_interopNamespaceDefault(mlHclust); var mlKmeans__namespace = /*#__PURE__*/_interopNamespaceDefault(mlKmeans); var mlNaivebayes__namespace = /*#__PURE__*/_interopNamespaceDefault(mlNaivebayes); var mlCrossValidation__namespace = /*#__PURE__*/_interopNamespaceDefault(mlCrossValidation); var mlFcnnls__namespace = /*#__PURE__*/_interopNamespaceDefault(mlFcnnls); var mlGsd__namespace = /*#__PURE__*/_interopNamespaceDefault(mlGsd); /* eslint-disable import/newline-after-import */ /* eslint-disable import/order */ /* eslint-disable import/first */ const { Matrix, SVD, EVD, CholeskyDecomposition, LuDecomposition, QrDecomposition, } = MatrixLib__namespace; const Array = { min, max, median, mean, mode, normed, rescale, sequentialFill, standardDeviation, sum, variance, }; const ArrayXY = { centroidsMerge, closestX, covariance, maxMerge, maxY, sortX, uniqueX, weightedMerge, equallySpaced, filterX, }; Object.defineProperty(exports, "PCA", { enumerable: true, get: function () { return mlPca.PCA; } }); exports.KNN = mlKnn; Object.defineProperty(exports, "KOPLS", { enumerable: true, get: function () { return mlPls.KOPLS; } }); Object.defineProperty(exports, "OPLS", { enumerable: true, get: function () { return mlPls.OPLS; } }); Object.defineProperty(exports, "PLS", { enumerable: true, get: function () { return mlPls.PLS; } }); Object.defineProperty(exports, "oplsNipals", { enumerable: true, get: function () { return mlPls.oplsNipals; } }); Object.defineProperty(exports, "ConfusionMatrix", { enumerable: true, get: function () { return mlConfusionMatrix.ConfusionMatrix; } }); exports.FNN = mlFnn; exports.SOM = mlSom; Object.defineProperty(exports, "ExponentialRegression", { enumerable: true, get: function () { return mlRegression.ExponentialRegression; } }); Object.defineProperty(exports, "MultivariateLinearRegression", { enumerable: true, get: function () { return mlRegression.MultivariateLinearRegression; } }); Object.defineProperty(exports, "PolynomialRegression", { enumerable: true, get: function () { return mlRegression.PolynomialRegression; } }); Object.defineProperty(exports, "PowerRegression", { enumerable: true, get: function () { return mlRegression.PowerRegression; } }); Object.defineProperty(exports, "RobustPolynomialRegression", { enumerable: true, get: function () { return mlRegression.RobustPolynomialRegression; } }); Object.defineProperty(exports, "SimpleLinearRegression", { enumerable: true, get: function () { return mlRegression.SimpleLinearRegression; } }); Object.defineProperty(exports, "TheilSenRegression", { enumerable: true, get: function () { return mlRegression.TheilSenRegression; } }); Object.defineProperty(exports, "levenbergMarquardt", { enumerable: true, get: function () { return mlLevenbergMarquardt.levenbergMarquardt; } }); exports.MatrixLib = MatrixLib__namespace; Object.defineProperty(exports, "SparseMatrix", { enumerable: true, get: function () { return mlSparseMatrix.SparseMatrix; } }); exports.Kernel = mlKernel; Object.defineProperty(exports, "Distance", { enumerable: true, get: function () { return mlDistance.distance; } }); Object.defineProperty(exports, "Similarity", { enumerable: true, get: function () { return mlDistance.similarity; } }); exports.distanceMatrix = mlDistanceMatrix; Object.defineProperty(exports, "XSadd", { enumerable: true, get: function () { return mlXsadd.XSadd; } }); Object.defineProperty(exports, "nGMCA", { enumerable: true, get: function () { return mlNgmca.nGMCA; } }); exports.Performance = mlPerformance; exports.savitzkyGolay = mlSavitzkyGolay; exports.BitArray = mlBitArray; exports.HashTable = mlHashTable; exports.padArray = mlPadArray; exports.binarySearch = binarySearch; Object.defineProperty(exports, "Random", { enumerable: true, get: function () { return mlRandom.Random; } }); Object.defineProperty(exports, "DecisionTreeClassifier", { enumerable: true, get: function () { return mlCart.DecisionTreeClassifier; } }); Object.defineProperty(exports, "DecisionTreeRegression", { enumerable: true, get: function () { return mlCart.DecisionTreeRegression; } }); Object.defineProperty(exports, "RandomForestClassifier", { enumerable: true, get: function () { return mlRandomForest.RandomForestClassifier; } }); Object.defineProperty(exports, "RandomForestRegression", { enumerable: true, get: function () { return mlRandomForest.RandomForestRegression; } }); exports.HClust = mlHclust__namespace; exports.KMeans = mlKmeans__namespace; exports.NaiveBayes = mlNaivebayes__namespace; exports.CrossValidation = mlCrossValidation__namespace; exports.FCNNLS = mlFcnnls__namespace; exports.GSD = mlGsd__namespace; exports.Array = Array; exports.ArrayXY = ArrayXY; exports.CholeskyDecomposition = CholeskyDecomposition; exports.EVD = EVD; exports.LuDecomposition = LuDecomposition; exports.Matrix = Matrix; exports.QrDecomposition = QrDecomposition; exports.SVD = SVD;