UNPKG

ml-regression

Version:
57 lines (41 loc) 1.8 kB
# ml-regression [![NPM version][npm-image]][npm-url] [![build status][travis-image]][travis-url] [![npm download][download-image]][download-url] Regression algorithms. ## Installation `$ npm install ml-regression` ## Examples ### Simple linear regression ```js const SLR = require("ml-regression").SLR; let inputs = [80, 60, 10, 20, 30]; let outputs = [20, 40, 30, 50, 60]; let regression = new SLR(inputs, outputs); regression.toString(3) === "f(x) = - 0.265 * x + 50.6"; ``` #### External links Check this cool blog post for a detailed example: https://hackernoon.com/machine-learning-with-javascript-part-1-9b97f3ed4fe5 ### Polynomial regression ```js const PolynomialRegression = require("ml-regression").PolynomialRegression; const x = [50, 50, 50, 70, 70, 70, 80, 80, 80, 90, 90, 90, 100, 100, 100]; const y = [ 3.3, 2.8, 2.9, 2.3, 2.6, 2.1, 2.5, 2.9, 2.4, 3.0, 3.1, 2.8, 3.3, 3.5, 3.0, ]; const degree = 5; // setup the maximum degree of the polynomial const regression = new PolynomialRegression(x, y, degree); console.log(regression.predict(80)); // Apply the model to some x value. Prints 2.6. console.log(regression.coefficients); // Prints the coefficients in increasing order of power (from 0 to degree). console.log(regression.toString(3)); // Prints a human-readable version of the function. console.log(regression.toLaTeX()); ``` ## License [MIT](./LICENSE) [npm-image]: https://img.shields.io/npm/v/ml-regression.svg?style=flat-square [npm-url]: https://npmjs.org/package/ml-regression [travis-image]: https://img.shields.io/travis/mljs/regression/main.svg?style=flat-square [travis-url]: https://travis-ci.org/mljs/regression [download-image]: https://img.shields.io/npm/dm/ml-regression.svg?style=flat-square [download-url]: https://npmjs.org/package/ml-regression