ml-kmeans
Version:
K-Means clustering
36 lines • 1.42 kB
TypeScript
export interface CentroidWithInformation {
centroid: number[];
error: number;
size: number;
}
export declare class KMeansResult {
/**
* Result of the kmeans algorithm
* @param clusters - the cluster identifier for each data dot
* @param centroids - the K centers in format [x,y,z,...], the error and size of the cluster
* @param converged - Converge criteria satisfied
* @param iterations - Current number of iterations
* @param distance - Distance function to use between the points
* @constructor
*/
clusters: number[];
centroids: number[][];
converged: boolean;
iterations: number;
distance: (a: number[], b: number[]) => number;
constructor(clusters: number[], centroids: number[][], converged: boolean, iterations: number, distance: (a: number[], b: number[]) => number);
/**
* Allows to compute for a new array of points their cluster id
* @param {Array<Array<number>>} data - the [x,y,z,...] points to cluster
* @return {Array<number>} - cluster id for each point
*/
nearest(data: number[][]): number[];
/**
* Returns the error and size of each cluster
* @ignore
* @param {Array<Array<number>>} data - the [x,y,z,...] points to cluster
* @return {KMeansResult}
*/
computeInformation(data: number[][]): CentroidWithInformation[];
}
//# sourceMappingURL=KMeansResult.d.ts.map