UNPKG

ml-kmeans

Version:
26 lines 1.15 kB
/** * Choose K different random points from the original data * @ignore * @param {Array<Array<number>>} data - Points in the format to cluster [x,y,z,...] * @param {number} K - number of clusters * @param {number} seed - seed for random number generation * @return {Array<Array<number>>} - Initial random points */ export declare function random(data: number[][], K: number, seed?: number): number[][]; /** * Chooses the most distant points to a first random pick * @ignore * @param {Array<Array<number>>} data - Points in the format to cluster [x,y,z,...] * @param {number} K - number of clusters * @param {Array<Array<number>>} distanceMatrix - matrix with the distance values * @param {number} seed - seed for random number generation * @return {Array<Array<number>>} - Initial random points */ export declare function mostDistant(data: number[][], K: number, distanceMatrix: number[][], seed?: number): number[][]; interface Options { seed: number; localTrials: number; } export declare function kmeanspp(X: number[][], K: number, options?: Partial<Options>): number[][]; export {}; //# sourceMappingURL=initialization.d.ts.map