ml-kmeans
Version:
K-Means clustering
26 lines • 1.15 kB
TypeScript
/**
* Choose K different random points from the original data
* @ignore
* @param {Array<Array<number>>} data - Points in the format to cluster [x,y,z,...]
* @param {number} K - number of clusters
* @param {number} seed - seed for random number generation
* @return {Array<Array<number>>} - Initial random points
*/
export declare function random(data: number[][], K: number, seed?: number): number[][];
/**
* Chooses the most distant points to a first random pick
* @ignore
* @param {Array<Array<number>>} data - Points in the format to cluster [x,y,z,...]
* @param {number} K - number of clusters
* @param {Array<Array<number>>} distanceMatrix - matrix with the distance values
* @param {number} seed - seed for random number generation
* @return {Array<Array<number>>} - Initial random points
*/
export declare function mostDistant(data: number[][], K: number, distanceMatrix: number[][], seed?: number): number[][];
interface Options {
seed: number;
localTrials: number;
}
export declare function kmeanspp(X: number[][], K: number, options?: Partial<Options>): number[][];
export {};
//# sourceMappingURL=initialization.d.ts.map