UNPKG

ml-basic

Version:

Lightweight, zero dependency, machine learning library

47 lines (46 loc) 1.68 kB
export default class Matrix { rows: number; columns: number; entries: Float64Array; constructor(matrix: Matrix); constructor(rows: number, columns: number, entries?: number[] | Float64Array); isEqualShape(matrix: Matrix): boolean; reshape(rows: number, columns: number): this; flat(): this; flip(): this; set(value: number): this; add(n: number): Matrix; add(matrix: Matrix): Matrix; sub(n: number): Matrix; sub(matrix: Matrix): Matrix; scale(n: number): Matrix; scale(matrix: Matrix): Matrix; apply(func: (value: number) => number): this; sum(): number; static mult(a: Matrix, b: Matrix): Matrix; mult(matrix: Matrix): this; static transpose(matrix: Matrix): Matrix; transpose(): this; private accumulate; static correlate(matrix: Matrix, kernel: Matrix, stride?: number, zeroPadding?: number): Matrix; correlate(kernel: Matrix, stride?: number, zeroPadding?: number): this; static reverseCorrelate(matrix: Matrix, kernel: Matrix, stride?: number): Matrix; static pool({ matrix, window, stride, zeroPadding, initial, pooler }: { matrix: Matrix; window: [number, number]; stride?: number; zeroPadding?: number; initial?: number; pooler: (aggregate: number, value: number) => number; }): Matrix; clip(min: number, max: number): this; dialate(gap: number): this; static identity(n: number): Matrix; static random(rows: number, columns: number, min?: number, max?: number): Matrix; serialize(): { type: string; rows: number; columns: number; entries: number[]; }; }