ml-basic
Version:
Lightweight, zero dependency, machine learning library
52 lines (51 loc) • 1.58 kB
TypeScript
import Matrix from "./matrix";
export declare abstract class LossFunction {
abstract name: string;
abstract mean(output: Matrix, target: Matrix): number;
abstract derivative(output: Matrix, target: Matrix): Matrix;
serialize(): string;
}
export declare class SquaredLoss extends LossFunction {
name: string;
mean(output: Matrix, target: Matrix): number;
derivative(output: Matrix, target: Matrix): Matrix;
}
export declare class CrossEntropyLoss extends LossFunction {
name: string;
mean(output: Matrix, target: Matrix): number;
derivative(output: Matrix, target: Matrix): Matrix;
}
export declare abstract class Activator {
abstract name: string;
abstract activate(n: number): number;
abstract deactivate(n: number): number;
serialize(): string;
}
export declare class Sigmoid extends Activator {
name: string;
activate(n: number): number;
deactivate(n: number): number;
}
export declare class TanH extends Activator {
name: string;
activate(n: number): number;
deactivate(n: number): number;
}
export declare class Elu extends Activator {
name: string;
alpha: number;
constructor(alpha?: number);
activate: (n: number) => number;
deactivate: (n: number) => number;
}
export declare class Relu extends Elu {
name: string;
constructor(alpha?: number);
activate: (n: number) => number;
deactivate: (n: number) => number;
}
export declare class SoftPlus extends Activator {
name: string;
activate(n: number): number;
deactivate(n: number): number;
}