mjs
Version:
3D matrix and vector operations
1,958 lines (1,793 loc) • 44.6 kB
JavaScript
"use strict";
/* -*- Mode: js2; js2-basic-offset: 4; indent-tabs-mode: nil; tab-width: 40; -*- */
/*
* Copyright (c) 2010 Mozilla Corporation
* Copyright (c) 2010 Vladimir Vukicevic
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
/*
* File: mjs
*
* Vector and Matrix math utilities for JavaScript, optimized for WebGL.
*/
module.exports = MJS;
function MJS(MJS_FLOAT_ARRAY_TYPE) {
var mJS = {};
if(!MJS_FLOAT_ARRAY_TYPE) {
if(typeof Float32Array === "undefined") {
MJS_FLOAT_ARRAY_TYPE = Array;
} else if(typeof WebGLFloatArray === "undefined") {
MJS_FLOAT_ARRAY_TYPE = Float32Array;
} else {
MJS_FLOAT_ARRAY_TYPE = WebGLFloatArray;
}
}
// Some hacks for running in both the shell and browser,
// and for supporting F32 and WebGLFloat arrays
// try { WebGLFloatArray; } catch (x) { WebGLFloatArray = Float32Array; }
/*
* Constant: MJS_FLOAT_ARRAY_TYPE
*
* The base float array type. By default, WebGLFloatArray.
*
* mjs can work with any array-like elements, but if an array
* creation is requested, it will create an array of the type
* MJS_FLOAT_ARRAY_TYPE. Also, the builtin constants such as (M4x4.I)
* will be of this type.
*/
/*
* Class: V2
*
* Methods for working with 2-element vectors. A vector is represented by a 2-element array.
* Any valid JavaScript array type may be used, but if new
* vectors are created they are created using the configured MJS_FLOAT_ARRAY_TYPE.
*/
var V2 = { };
mJS.V2 = V2;
V2._temp1 = new MJS_FLOAT_ARRAY_TYPE(2);
V2._temp2 = new MJS_FLOAT_ARRAY_TYPE(2);
V2._temp3 = new MJS_FLOAT_ARRAY_TYPE(2);
if (MJS_FLOAT_ARRAY_TYPE == Array) {
V2.x = [1.0, 0.0];
V2.y = [0.0, 1.0];
V2.$ = function V2_$(x, y) {
return [x, y];
};
V2.clone = function V2_clone(a) {
return [a[0], a[1]];
};
} else {
V2.x = new MJS_FLOAT_ARRAY_TYPE([1.0, 0.0]);
V2.y = new MJS_FLOAT_ARRAY_TYPE([0.0, 1.0]);
/*
* Function: V2.$
*
* Creates a new 2-element vector with the given values.
*
* Parameters:
*
* x,y - the 2 elements of the new vector.
*
* Returns:
*
* A new vector containing with the given argument values.
*/
V2.$ = function V2_$(x, y) {
return new MJS_FLOAT_ARRAY_TYPE([x, y]);
};
/*
* Function: V2.clone
*
* Clone the given 2-element vector.
*
* Parameters:
*
* a - the 2-element vector to clone
*
* Returns:
*
* A new vector with the same values as the passed-in one.
*/
V2.clone = function V2_clone(a) {
return new MJS_FLOAT_ARRAY_TYPE(a);
};
}
V2.u = V2.x;
V2.v = V2.y;
/*
* Function: V2.add
*
* Perform r = a + b.
*
* Parameters:
*
* a - the first vector operand
* b - the second vector operand
* r - optional vector to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 2-element vector with the result.
*/
V2.add = function V2_add(a, b, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(2);
r[0] = a[0] + b[0];
r[1] = a[1] + b[1];
return r;
};
/*
* Function: V2.sub
*
* Perform
* r = a - b.
*
* Parameters:
*
* a - the first vector operand
* b - the second vector operand
* r - optional vector to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 2-element vector with the result.
*/
V2.sub = function V2_sub(a, b, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(2);
r[0] = a[0] - b[0];
r[1] = a[1] - b[1];
return r;
};
/*
* Function: V2.neg
*
* Perform
* r = - a.
*
* Parameters:
*
* a - the vector operand
* r - optional vector to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 2-element vector with the result.
*/
V2.neg = function V2_neg(a, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(2);
r[0] = - a[0];
r[1] = - a[1];
return r;
};
/*
* Function: V2.direction
*
* Perform
* r = (a - b) / |a - b|. The result is the normalized
* direction from a to b.
*
* Parameters:
*
* a - the first vector operand
* b - the second vector operand
* r - optional vector to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 2-element vector with the result.
*/
V2.direction = function V2_direction(a, b, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(2);
return V2.normalize(V2.sub(a, b, r), r);
};
/*
* Function: V2.length
*
* Perform r = |a|.
*
* Parameters:
*
* a - the vector operand
*
* Returns:
*
* The length of the given vector.
*/
V2.length = function V2_length(a) {
return Math.sqrt(a[0]*a[0] + a[1]*a[1]);
};
/*
* Function: V2.lengthSquard
*
* Perform r = |a|*|a|.
*
* Parameters:
*
* a - the vector operand
*
* Returns:
*
* The square of the length of the given vector.
*/
V2.lengthSquared = function V2_lengthSquared(a) {
return a[0]*a[0] + a[1]*a[1];
};
/*
* Function: V2.normalize
*
* Perform r = a / |a|.
*
* Parameters:
*
* a - the vector operand
* r - optional vector to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 2-element vector with the result.
*/
V2.normalize = function V2_normalize(a, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(2);
var im = 1.0 / V2.length(a);
r[0] = a[0] * im;
r[1] = a[1] * im;
return r;
};
/*
* Function: V2.scale
*
* Perform r = a * k.
*
* Parameters:
*
* a - the vector operand
* k - a scalar value
* r - optional vector to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 2-element vector with the result.
*/
V2.scale = function V2_scale(a, k, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(2);
r[0] = a[0] * k;
r[1] = a[1] * k;
return r;
};
/*
* Function: V2.dot
*
* Perform
* r = dot(a, b).
*
* Parameters:
*
* a - the first vector operand
* b - the second vector operand
*
* Returns:
*
* The dot product of a and b.
*/
V2.dot = function V2_dot(a, b) {
return a[0] * b[0] +
a[1] * b[1];
};
/*
* Class: V3
*
* Methods for working with 3-element vectors. A vector is represented by a 3-element array.
* Any valid JavaScript array type may be used, but if new
* vectors are created they are created using the configured MJS_FLOAT_ARRAY_TYPE.
*/
var V3 = { };
mJS.V3 = V3;
V3._temp1 = new MJS_FLOAT_ARRAY_TYPE(3);
V3._temp2 = new MJS_FLOAT_ARRAY_TYPE(3);
V3._temp3 = new MJS_FLOAT_ARRAY_TYPE(3);
if (MJS_FLOAT_ARRAY_TYPE == Array) {
V3.x = [1.0, 0.0, 0.0];
V3.y = [0.0, 1.0, 0.0];
V3.z = [0.0, 0.0, 1.0];
V3.$ = function V3_$(x, y, z) {
return [x, y, z];
};
V3.clone = function V3_clone(a) {
return [a[0], a[1], a[2]];
};
} else {
V3.x = new MJS_FLOAT_ARRAY_TYPE([1.0, 0.0, 0.0]);
V3.y = new MJS_FLOAT_ARRAY_TYPE([0.0, 1.0, 0.0]);
V3.z = new MJS_FLOAT_ARRAY_TYPE([0.0, 0.0, 1.0]);
/*
* Function: V3.$
*
* Creates a new 3-element vector with the given values.
*
* Parameters:
*
* x,y,z - the 3 elements of the new vector.
*
* Returns:
*
* A new vector containing with the given argument values.
*/
V3.$ = function V3_$(x, y, z) {
return new MJS_FLOAT_ARRAY_TYPE([x, y, z]);
};
/*
* Function: V3.clone
*
* Clone the given 3-element vector.
*
* Parameters:
*
* a - the 3-element vector to clone
*
* Returns:
*
* A new vector with the same values as the passed-in one.
*/
V3.clone = function V3_clone(a) {
return new MJS_FLOAT_ARRAY_TYPE(a);
};
}
V3.u = V3.x;
V3.v = V3.y;
/*
* Function: V3.add
*
* Perform r = a + b.
*
* Parameters:
*
* a - the first vector operand
* b - the second vector operand
* r - optional vector to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 3-element vector with the result.
*/
V3.add = function V3_add(a, b, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(3);
r[0] = a[0] + b[0];
r[1] = a[1] + b[1];
r[2] = a[2] + b[2];
return r;
};
/*
* Function: V3.sub
*
* Perform
* r = a - b.
*
* Parameters:
*
* a - the first vector operand
* b - the second vector operand
* r - optional vector to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 3-element vector with the result.
*/
V3.sub = function V3_sub(a, b, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(3);
r[0] = a[0] - b[0];
r[1] = a[1] - b[1];
r[2] = a[2] - b[2];
return r;
};
/*
* Function: V3.neg
*
* Perform
* r = - a.
*
* Parameters:
*
* a - the vector operand
* r - optional vector to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 3-element vector with the result.
*/
V3.neg = function V3_neg(a, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(3);
r[0] = - a[0];
r[1] = - a[1];
r[2] = - a[2];
return r;
};
/*
* Function: V3.direction
*
* Perform
* r = (a - b) / |a - b|. The result is the normalized
* direction from a to b.
*
* Parameters:
*
* a - the first vector operand
* b - the second vector operand
* r - optional vector to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 3-element vector with the result.
*/
V3.direction = function V3_direction(a, b, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(3);
return V3.normalize(V3.sub(a, b, r), r);
};
/*
* Function: V3.length
*
* Perform r = |a|.
*
* Parameters:
*
* a - the vector operand
*
* Returns:
*
* The length of the given vector.
*/
V3.length = function V3_length(a) {
return Math.sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
};
/*
* Function: V3.lengthSquard
*
* Perform r = |a|*|a|.
*
* Parameters:
*
* a - the vector operand
*
* Returns:
*
* The square of the length of the given vector.
*/
V3.lengthSquared = function V3_lengthSquared(a) {
return a[0]*a[0] + a[1]*a[1] + a[2]*a[2];
};
/*
* Function: V3.normalize
*
* Perform r = a / |a|.
*
* Parameters:
*
* a - the vector operand
* r - optional vector to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 3-element vector with the result.
*/
V3.normalize = function V3_normalize(a, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(3);
var im = 1.0 / V3.length(a);
r[0] = a[0] * im;
r[1] = a[1] * im;
r[2] = a[2] * im;
return r;
};
/*
* Function: V3.scale
*
* Perform r = a * k.
*
* Parameters:
*
* a - the vector operand
* k - a scalar value
* r - optional vector to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 3-element vector with the result.
*/
V3.scale = function V3_scale(a, k, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(3);
r[0] = a[0] * k;
r[1] = a[1] * k;
r[2] = a[2] * k;
return r;
};
/*
* Function: V3.dot
*
* Perform
* r = dot(a, b).
*
* Parameters:
*
* a - the first vector operand
* b - the second vector operand
*
* Returns:
*
* The dot product of a and b.
*/
V3.dot = function V3_dot(a, b) {
return a[0] * b[0] +
a[1] * b[1] +
a[2] * b[2];
};
/*
* Function: V3.cross
*
* Perform r = a x b.
*
* Parameters:
*
* a - the first vector operand
* b - the second vector operand
* r - optional vector to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 3-element vector with the result.
*/
V3.cross = function V3_cross(a, b, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(3);
r[0] = a[1]*b[2] - a[2]*b[1];
r[1] = a[2]*b[0] - a[0]*b[2];
r[2] = a[0]*b[1] - a[1]*b[0];
return r;
};
/*
* Function: V3.mul4x4
*
* Perform
* r = m * v.
*
* Parameters:
*
* m - the 4x4 matrix operand
* v - the 3-element vector operand
* r - optional vector to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 3-element vector with the result.
* The 4-element result vector is divided by the w component
* and returned as a 3-element vector.
*/
V3.mul4x4 = function V3_mul4x4(m, v, r) {
var w;
var tmp = V3._temp1;
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(3);
tmp[0] = m[ 3];
tmp[1] = m[ 7];
tmp[2] = m[11];
w = V3.dot(v, tmp) + m[15];
tmp[0] = m[ 0];
tmp[1] = m[ 4];
tmp[2] = m[ 8];
r[0] = (V3.dot(v, tmp) + m[12])/w;
tmp[0] = m[ 1];
tmp[1] = m[ 5];
tmp[2] = m[ 9];
r[1] = (V3.dot(v, tmp) + m[13])/w;
tmp[0] = m[ 2];
tmp[1] = m[ 6];
tmp[2] = m[10];
r[2] = (V3.dot(v, tmp) + m[14])/w;
return r;
};
/*
* Class: M4x4
*
* Methods for working with 4x4 matrices. A matrix is represented by a 16-element array
* in column-major order. Any valid JavaScript array type may be used, but if new
* matrices are created they are created using the configured MJS_FLOAT_ARRAY_TYPE.
*/
var M4x4 = { };
mJS.M4x4 = M4x4;
M4x4._temp1 = new MJS_FLOAT_ARRAY_TYPE(16);
M4x4._temp2 = new MJS_FLOAT_ARRAY_TYPE(16);
if (MJS_FLOAT_ARRAY_TYPE == Array) {
M4x4.I = [1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0];
M4x4.$ = function M4x4_$(m00, m01, m02, m03,
m04, m05, m06, m07,
m08, m09, m10, m11,
m12, m13, m14, m15)
{
return [m00, m01, m02, m03,
m04, m05, m06, m07,
m08, m09, m10, m11,
m12, m13, m14, m15];
};
M4x4.clone = function M4x4_clone(m) {
return [m[0], m[1], m[2], m[3],
m[4], m[5], m[6], m[7],
m[8], m[9], m[10], m[11],
m[12], m[13], m[14], m[15]];
};
} else {
M4x4.I = new MJS_FLOAT_ARRAY_TYPE([1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0]);
/*
* Function: M4x4.$
*
* Creates a new 4x4 matrix with the given values.
*
* Parameters:
*
* m00..m15 - the 16 elements of the new matrix.
*
* Returns:
*
* A new matrix filled with the given argument values.
*/
M4x4.$ = function M4x4_$(m00, m01, m02, m03,
m04, m05, m06, m07,
m08, m09, m10, m11,
m12, m13, m14, m15)
{
return new MJS_FLOAT_ARRAY_TYPE([m00, m01, m02, m03,
m04, m05, m06, m07,
m08, m09, m10, m11,
m12, m13, m14, m15]);
};
/*
* Function: M4x4.clone
*
* Clone the given 4x4 matrix.
*
* Parameters:
*
* m - the 4x4 matrix to clone
*
* Returns:
*
* A new matrix with the same values as the passed-in one.
*/
M4x4.clone = function M4x4_clone(m) {
return new MJS_FLOAT_ARRAY_TYPE(m);
};
}
M4x4.identity = M4x4.I;
/*
* Function: M4x4.topLeft3x3
*
* Return the top left 3x3 matrix from the given 4x4 matrix m.
*
* Parameters:
*
* m - the matrix
* r - optional 3x3 matrix to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 3x3 matrix with the result.
*/
M4x4.topLeft3x3 = function M4x4_topLeft3x3(m, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(9);
r[0] = m[0]; r[1] = m[1]; r[2] = m[2];
r[3] = m[4]; r[4] = m[5]; r[5] = m[6];
r[6] = m[8]; r[7] = m[9]; r[8] = m[10];
return r;
};
/*
* Function: M4x4.inverseOrthonormal
*
* Computes the inverse of the given matrix m, assuming that
* the matrix is orthonormal.
*
* Parameters:
*
* m - the matrix
* r - optional 4x4 matrix to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 4x4 matrix with the result.
*/
M4x4.inverseOrthonormal = function M4x4_inverseOrthonormal(m, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
M4x4.transpose(m, r);
var t = [m[12], m[13], m[14]];
r[3] = r[7] = r[11] = 0;
r[12] = -V3.dot([r[0], r[4], r[8]], t);
r[13] = -V3.dot([r[1], r[5], r[9]], t);
r[14] = -V3.dot([r[2], r[6], r[10]], t);
return r;
};
/*
* Function: M4x4.inverseTo3x3
*
* Computes the inverse of the given matrix m, but calculates
* only the top left 3x3 values of the result.
*
* Parameters:
*
* m - the matrix
* r - optional 3x3 matrix to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 3x3 matrix with the result.
*/
M4x4.inverseTo3x3 = function M4x4_inverseTo3x3(m, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(9);
var a11 = m[10]*m[5]-m[6]*m[9],
a21 = -m[10]*m[1]+m[2]*m[9],
a31 = m[6]*m[1]-m[2]*m[5],
a12 = -m[10]*m[4]+m[6]*m[8],
a22 = m[10]*m[0]-m[2]*m[8],
a32 = -m[6]*m[0]+m[2]*m[4],
a13 = m[9]*m[4]-m[5]*m[8],
a23 = -m[9]*m[0]+m[1]*m[8],
a33 = m[5]*m[0]-m[1]*m[4];
var det = m[0]*(a11) + m[1]*(a12) + m[2]*(a13);
if (det == 0) // no inverse
throw "matrix not invertible";
var idet = 1.0 / det;
r[0] = idet*a11;
r[1] = idet*a21;
r[2] = idet*a31;
r[3] = idet*a12;
r[4] = idet*a22;
r[5] = idet*a32;
r[6] = idet*a13;
r[7] = idet*a23;
r[8] = idet*a33;
return r;
};
/*
* Function: M4x4.makeFrustum
*
* Creates a matrix for a projection frustum with the given parameters.
*
* Parameters:
*
* left - the left coordinate of the frustum
* right- the right coordinate of the frustum
* bottom - the bottom coordinate of the frustum
* top - the top coordinate of the frustum
* znear - the near z distance of the frustum
* zfar - the far z distance of the frustum
* r - optional 4x4 matrix to store the result in
*
* Returns:
*
* If r is specified, returns r after creating the projection matrix.
* Otherwise, returns a new 4x4 matrix.
*/
M4x4.makeFrustum = function M4x4_makeFrustum(left, right, bottom, top, znear, zfar, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
var X = 2*znear/(right-left);
var Y = 2*znear/(top-bottom);
var A = (right+left)/(right-left);
var B = (top+bottom)/(top-bottom);
var C = -(zfar+znear)/(zfar-znear);
var D = -2*zfar*znear/(zfar-znear);
r[0] = 2*znear/(right-left);
r[1] = 0;
r[2] = 0;
r[3] = 0;
r[4] = 0;
r[5] = 2*znear/(top-bottom);
r[6] = 0;
r[7] = 0;
r[8] = (right+left)/(right-left);
r[9] = (top+bottom)/(top-bottom);
r[10] = -(zfar+znear)/(zfar-znear);
r[11] = -1;
r[12] = 0;
r[13] = 0;
r[14] = -2*zfar*znear/(zfar-znear);
r[15] = 0;
return r;
};
/*
* Function: M4x4.makePerspective
*
* Creates a matrix for a perspective projection with the given parameters.
*
* Parameters:
*
* fovy - field of view in the y axis, in degrees
* aspect - aspect ratio
* znear - the near z distance of the projection
* zfar - the far z distance of the projection
* r - optional 4x4 matrix to store the result in
*
* Returns:
*
* If r is specified, returns r after creating the projection matrix.
* Otherwise, returns a new 4x4 matrix.
*/
M4x4.makePerspective = function M4x4_makePerspective (fovy, aspect, znear, zfar, r) {
var ymax = znear * Math.tan(fovy * Math.PI / 360.0);
var ymin = -ymax;
var xmin = ymin * aspect;
var xmax = ymax * aspect;
return M4x4.makeFrustum(xmin, xmax, ymin, ymax, znear, zfar, r);
};
/*
* Function: M4x4.makeOrtho
*
* Creates a matrix for an orthogonal frustum projection with the given parameters.
*
* Parameters:
*
* left - the left coordinate of the frustum
* right- the right coordinate of the frustum
* bottom - the bottom coordinate of the frustum
* top - the top coordinate of the frustum
* znear - the near z distance of the frustum
* zfar - the far z distance of the frustum
* r - optional 4x4 matrix to store the result in
*
* Returns:
*
* If r is specified, returns r after creating the projection matrix.
* Otherwise, returns a new 4x4 matrix.
*/
M4x4.makeOrtho = function M4x4_makeOrtho (left, right, bottom, top, znear, zfar, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
var tX = -(right+left)/(right-left);
var tY = -(top+bottom)/(top-bottom);
var tZ = -(zfar+znear)/(zfar-znear);
var X = 2 / (right-left);
var Y = 2 / (top-bottom);
var Z = -2 / (zfar-znear);
r[0] = 2 / (right-left);
r[1] = 0;
r[2] = 0;
r[3] = 0;
r[4] = 0;
r[5] = 2 / (top-bottom);
r[6] = 0;
r[7] = 0;
r[8] = 0;
r[9] = 0;
r[10] = -2 / (zfar-znear);
r[11] = 0;
r[12] = -(right+left)/(right-left);
r[13] = -(top+bottom)/(top-bottom);
r[14] = -(zfar+znear)/(zfar-znear);
r[15] = 1;
return r;
};
/*
* Function: M4x4.makeOrtho
*
* Creates a matrix for a 2D orthogonal frustum projection with the given parameters.
* znear and zfar are assumed to be -1 and 1, respectively.
*
* Parameters:
*
* left - the left coordinate of the frustum
* right- the right coordinate of the frustum
* bottom - the bottom coordinate of the frustum
* top - the top coordinate of the frustum
* r - optional 4x4 matrix to store the result in
*
* Returns:
*
* If r is specified, returns r after creating the projection matrix.
* Otherwise, returns a new 4x4 matrix.
*/
M4x4.makeOrtho2D = function M4x4_makeOrtho2D (left, right, bottom, top, r) {
return M4x4.makeOrtho(left, right, bottom, top, -1, 1, r);
};
/*
* Function: M4x4.mul
*
* Performs r = a * b.
*
* Parameters:
*
* a - the first matrix operand
* b - the second matrix operand
* r - optional 4x4 matrix to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 4x4 matrix with the result.
*/
M4x4.mul = function M4x4_mul(a, b, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
var a11 = a[0];
var a21 = a[1];
var a31 = a[2];
var a41 = a[3];
var a12 = a[4];
var a22 = a[5];
var a32 = a[6];
var a42 = a[7];
var a13 = a[8];
var a23 = a[9];
var a33 = a[10];
var a43 = a[11];
var a14 = a[12];
var a24 = a[13];
var a34 = a[14];
var a44 = a[15];
var b11 = b[0];
var b21 = b[1];
var b31 = b[2];
var b41 = b[3];
var b12 = b[4];
var b22 = b[5];
var b32 = b[6];
var b42 = b[7];
var b13 = b[8];
var b23 = b[9];
var b33 = b[10];
var b43 = b[11];
var b14 = b[12];
var b24 = b[13];
var b34 = b[14];
var b44 = b[15];
r[0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
r[1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
r[2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
r[3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
r[4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
r[5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
r[6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
r[7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
r[8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
r[9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
r[10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
r[11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
r[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
r[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
r[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
r[15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
return r;
};
/*
* Function: M4x4.mulOffset
*
* Performs r' = a * b, where r' is the 16 elements of r starting at element o.
*
* Parameters:
*
* a - the first matrix operand
* b - the second matrix operand
* r - array to store the result in
* o - offset into r at which to start storing results
*
* Returns:
*
* r
*/
M4x4.mulOffset = function M4x4_mulOffset(a, b, r, o) {
var a21 = a[1];
var a31 = a[2];
var a41 = a[3];
var a12 = a[4];
var a22 = a[5];
var a32 = a[6];
var a42 = a[7];
var a13 = a[8];
var a23 = a[9];
var a33 = a[10];
var a43 = a[11];
var a14 = a[12];
var a24 = a[13];
var a34 = a[14];
var a44 = a[15];
var b11 = b[0];
var b21 = b[1];
var b31 = b[2];
var b41 = b[3];
var b12 = b[4];
var b22 = b[5];
var b32 = b[6];
var b42 = b[7];
var b13 = b[8];
var b23 = b[9];
var b33 = b[10];
var b43 = b[11];
var b14 = b[12];
var b24 = b[13];
var b34 = b[14];
var b44 = b[15];
r[o+0] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;
r[o+1] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;
r[o+2] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;
r[o+3] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;
r[o+4] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;
r[o+5] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;
r[o+6] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;
r[o+7] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;
r[o+8] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;
r[o+9] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;
r[o+10] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;
r[o+11] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;
r[o+12] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;
r[o+13] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;
r[o+14] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;
r[o+15] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;
return r;
};
/*
* Function: M4x4.mulAffine
*
* Performs r = a * b, assuming a and b are affine (elements 3,7,11,15 = 0,0,0,1)
*
* Parameters:
*
* a - the first matrix operand
* b - the second matrix operand
* r - optional 4x4 matrix to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 4x4 matrix with the result.
*/
M4x4.mulAffine = function M4x4_mulAffine(a, b, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
var a11 = a[0];
var a21 = a[1];
var a31 = a[2];
var a12 = a[4];
var a22 = a[5];
var a32 = a[6];
var a13 = a[8];
var a23 = a[9];
var a33 = a[10];
var a14 = a[12];
var a24 = a[13];
var a34 = a[14];
var b11 = b[0];
var b21 = b[1];
var b31 = b[2];
var b12 = b[4];
var b22 = b[5];
var b32 = b[6];
var b13 = b[8];
var b23 = b[9];
var b33 = b[10];
var b14 = b[12];
var b24 = b[13];
var b34 = b[14];
r[0] = a11 * b11 + a12 * b21 + a13 * b31;
r[1] = a21 * b11 + a22 * b21 + a23 * b31;
r[2] = a31 * b11 + a32 * b21 + a33 * b31;
r[3] = 0;
r[4] = a11 * b12 + a12 * b22 + a13 * b32;
r[5] = a21 * b12 + a22 * b22 + a23 * b32;
r[6] = a31 * b12 + a32 * b22 + a33 * b32;
r[7] = 0;
r[8] = a11 * b13 + a12 * b23 + a13 * b33;
r[9] = a21 * b13 + a22 * b23 + a23 * b33;
r[10] = a31 * b13 + a32 * b23 + a33 * b33;
r[11] = 0;
r[12] = a11 * b14 + a12 * b24 + a13 * b34 + a14;
r[13] = a21 * b14 + a22 * b24 + a23 * b34 + a24;
r[14] = a31 * b14 + a32 * b24 + a33 * b34 + a34;
r[15] = 1;
return r;
};
/*
* Function: M4x4.mulAffineOffset
*
* Performs r' = a * b, assuming a and b are affine (elements 3,7,11,15 = 0,0,0,1), where r' is the 16 elements of r starting at element o
*
* Parameters:
*
* a - the first matrix operand
* b - the second matrix operand
* r - array to store the result in
* o - offset into r at which to start storing results
*
* Returns:
*
* r
*/
M4x4.mulAffine = function M4x4_mulAffine(a, b, r, o) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
o = o || 0;
var a11 = a[0];
var a21 = a[1];
var a31 = a[2];
var a12 = a[4];
var a22 = a[5];
var a32 = a[6];
var a13 = a[8];
var a23 = a[9];
var a33 = a[10];
var a14 = a[12];
var a24 = a[13];
var a34 = a[14];
var b11 = b[0];
var b21 = b[1];
var b31 = b[2];
var b12 = b[4];
var b22 = b[5];
var b32 = b[6];
var b13 = b[8];
var b23 = b[9];
var b33 = b[10];
var b14 = b[12];
var b24 = b[13];
var b34 = b[14];
r[o+0] = a11 * b11 + a12 * b21 + a13 * b31;
r[o+1] = a21 * b11 + a22 * b21 + a23 * b31;
r[o+2] = a31 * b11 + a32 * b21 + a33 * b31;
r[o+3] = 0;
r[o+4] = a11 * b12 + a12 * b22 + a13 * b32;
r[o+5] = a21 * b12 + a22 * b22 + a23 * b32;
r[o+6] = a31 * b12 + a32 * b22 + a33 * b32;
r[o+7] = 0;
r[o+8] = a11 * b13 + a12 * b23 + a13 * b33;
r[o+9] = a21 * b13 + a22 * b23 + a23 * b33;
r[o+10] = a31 * b13 + a32 * b23 + a33 * b33;
r[o+11] = 0;
r[o+12] = a11 * b14 + a12 * b24 + a13 * b34 + a14;
r[o+13] = a21 * b14 + a22 * b24 + a23 * b34 + a24;
r[o+14] = a31 * b14 + a32 * b24 + a33 * b34 + a34;
r[o+15] = 1;
return r;
};
/*
* Function: M4x4.makeRotate
*
* Creates a transformation matrix for rotation by angle radians about the 3-element vector axis.
*
* Parameters:
*
* angle - the angle of rotation, in radians
* axis - the axis around which the rotation is performed, a 3-element vector
* r - optional 4x4 matrix to store the result in
*
* Returns:
*
* If r is specified, returns r after creating the matrix.
* Otherwise, returns a new 4x4 matrix with the result.
*/
M4x4.makeRotate = function M4x4_makeRotate(angle, axis, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
axis = V3.normalize(axis, V3._temp1);
var x = axis[0], y = axis[1], z = axis[2];
var c = Math.cos(angle);
var c1 = 1-c;
var s = Math.sin(angle);
r[0] = x*x*c1+c;
r[1] = y*x*c1+z*s;
r[2] = z*x*c1-y*s;
r[3] = 0;
r[4] = x*y*c1-z*s;
r[5] = y*y*c1+c;
r[6] = y*z*c1+x*s;
r[7] = 0;
r[8] = x*z*c1+y*s;
r[9] = y*z*c1-x*s;
r[10] = z*z*c1+c;
r[11] = 0;
r[12] = 0;
r[13] = 0;
r[14] = 0;
r[15] = 1;
return r;
};
/*
* Function: M4x4.rotate
*
* Concatenates a rotation of angle radians about the axis to the give matrix m.
*
* Parameters:
*
* angle - the angle of rotation, in radians
* axis - the axis around which the rotation is performed, a 3-element vector
* m - the matrix to concatenate the rotation to
* r - optional 4x4 matrix to store the result in
*
* Returns:
*
* If r is specified, returns r after performing the operation.
* Otherwise, returns a new 4x4 matrix with the result.
*/
M4x4.rotate = function M4x4_rotate(angle, axis, m, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
var a0=axis [0], a1=axis [1], a2=axis [2];
var l = Math.sqrt(a0*a0 + a1*a1 + a2*a2);
var x = a0, y = a1, z = a2;
if (l != 1.0) {
var im = 1.0 / l;
x *= im;
y *= im;
z *= im;
}
var c = Math.cos(angle);
var c1 = 1-c;
var s = Math.sin(angle);
var xs = x*s;
var ys = y*s;
var zs = z*s;
var xyc1 = x * y * c1;
var xzc1 = x * z * c1;
var yzc1 = y * z * c1;
var m11 = m[0];
var m21 = m[1];
var m31 = m[2];
var m41 = m[3];
var m12 = m[4];
var m22 = m[5];
var m32 = m[6];
var m42 = m[7];
var m13 = m[8];
var m23 = m[9];
var m33 = m[10];
var m43 = m[11];
var t11 = x * x * c1 + c;
var t21 = xyc1 + zs;
var t31 = xzc1 - ys;
var t12 = xyc1 - zs;
var t22 = y * y * c1 + c;
var t32 = yzc1 + xs;
var t13 = xzc1 + ys;
var t23 = yzc1 - xs;
var t33 = z * z * c1 + c;
r[0] = m11 * t11 + m12 * t21 + m13 * t31;
r[1] = m21 * t11 + m22 * t21 + m23 * t31;
r[2] = m31 * t11 + m32 * t21 + m33 * t31;
r[3] = m41 * t11 + m42 * t21 + m43 * t31;
r[4] = m11 * t12 + m12 * t22 + m13 * t32;
r[5] = m21 * t12 + m22 * t22 + m23 * t32;
r[6] = m31 * t12 + m32 * t22 + m33 * t32;
r[7] = m41 * t12 + m42 * t22 + m43 * t32;
r[8] = m11 * t13 + m12 * t23 + m13 * t33;
r[9] = m21 * t13 + m22 * t23 + m23 * t33;
r[10] = m31 * t13 + m32 * t23 + m33 * t33;
r[11] = m41 * t13 + m42 * t23 + m43 * t33;
if (r != m) {
r[12] = m[12];
r[13] = m[13];
r[14] = m[14];
r[15] = m[15];
}
return r;
};
/*
* Function: M4x4.makeScale3
*
* Creates a transformation matrix for scaling by 3 scalar values, one for
* each of the x, y, and z directions.
*
* Parameters:
*
* x - the scale for the x axis
* y - the scale for the y axis
* z - the scale for the z axis
* r - optional 4x4 matrix to store the result in
*
* Returns:
*
* If r is specified, returns r after creating the matrix.
* Otherwise, returns a new 4x4 matrix with the result.
*/
M4x4.makeScale3 = function M4x4_makeScale3(x, y, z, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
r[0] = x;
r[1] = 0;
r[2] = 0;
r[3] = 0;
r[4] = 0;
r[5] = y;
r[6] = 0;
r[7] = 0;
r[8] = 0;
r[9] = 0;
r[10] = z;
r[11] = 0;
r[12] = 0;
r[13] = 0;
r[14] = 0;
r[15] = 1;
return r;
};
/*
* Function: M4x4.makeScale1
*
* Creates a transformation matrix for a uniform scale by a single scalar value.
*
* Parameters:
*
* k - the scale factor
* r - optional 4x4 matrix to store the result in
*
* Returns:
*
* If r is specified, returns r after creating the matrix.
* Otherwise, returns a new 4x4 matrix with the result.
*/
M4x4.makeScale1 = function M4x4_makeScale1(k, r) {
return M4x4.makeScale3(k, k, k, r);
};
/*
* Function: M4x4.makeScale
*
* Creates a transformation matrix for scaling each of the x, y, and z axes by the amount
* given in the corresponding element of the 3-element vector.
*
* Parameters:
*
* v - the 3-element vector containing the scale factors
* r - optional 4x4 matrix to store the result in
*
* Returns:
*
* If r is specified, returns r after creating the matrix.
* Otherwise, returns a new 4x4 matrix with the result.
*/
M4x4.makeScale = function M4x4_makeScale(v, r) {
return M4x4.makeScale3(v[0], v[1], v[2], r);
};
/*
* Function: M4x4.scale3
*/
M4x4.scale3 = function M4x4_scale3(x, y, z, m, r) {
if (r == m) {
m[0] *= x;
m[1] *= x;
m[2] *= x;
m[3] *= x;
m[4] *= y;
m[5] *= y;
m[6] *= y;
m[7] *= y;
m[8] *= z;
m[9] *= z;
m[10] *= z;
m[11] *= z;
return m;
}
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
r[0] = m[0] * x;
r[1] = m[1] * x;
r[2] = m[2] * x;
r[3] = m[3] * x;
r[4] = m[4] * y;
r[5] = m[5] * y;
r[6] = m[6] * y;
r[7] = m[7] * y;
r[8] = m[8] * z;
r[9] = m[9] * z;
r[10] = m[10] * z;
r[11] = m[11] * z;
r[12] = m[12];
r[13] = m[13];
r[14] = m[14];
r[15] = m[15];
return r;
};
/*
* Function: M4x4.scale1
*/
M4x4.scale1 = function M4x4_scale1(k, m, r) {
if (r == m) {
m[0] *= k;
m[1] *= k;
m[2] *= k;
m[3] *= k;
m[4] *= k;
m[5] *= k;
m[6] *= k;
m[7] *= k;
m[8] *= k;
m[9] *= k;
m[10] *= k;
m[11] *= k;
return m;
}
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
r[0] = m[0] * k;
r[1] = m[1] * k;
r[2] = m[2] * k;
r[3] = m[3] * k;
r[4] = m[4] * k;
r[5] = m[5] * k;
r[6] = m[6] * k;
r[7] = m[7] * k;
r[8] = m[8] * k;
r[9] = m[9] * k;
r[10] = m[10] * k;
r[11] = m[11] * k;
r[12] = m[12];
r[13] = m[13];
r[14] = m[14];
r[15] = m[15];
return r;
};
/*
* Function: M4x4.scale1
*/
M4x4.scale = function M4x4_scale(v, m, r) {
var x = v[0], y = v[1], z = v[2];
if (r == m) {
m[0] *= x;
m[1] *= x;
m[2] *= x;
m[3] *= x;
m[4] *= y;
m[5] *= y;
m[6] *= y;
m[7] *= y;
m[8] *= z;
m[9] *= z;
m[10] *= z;
m[11] *= z;
return m;
}
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
r[0] = m[0] * x;
r[1] = m[1] * x;
r[2] = m[2] * x;
r[3] = m[3] * x;
r[4] = m[4] * y;
r[5] = m[5] * y;
r[6] = m[6] * y;
r[7] = m[7] * y;
r[8] = m[8] * z;
r[9] = m[9] * z;
r[10] = m[10] * z;
r[11] = m[11] * z;
r[12] = m[12];
r[13] = m[13];
r[14] = m[14];
r[15] = m[15];
return r;
};
/*
* Function: M4x4.makeTranslate3
*/
M4x4.makeTranslate3 = function M4x4_makeTranslate3(x, y, z, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
r[0] = 1;
r[1] = 0;
r[2] = 0;
r[3] = 0;
r[4] = 0;
r[5] = 1;
r[6] = 0;
r[7] = 0;
r[8] = 0;
r[9] = 0;
r[10] = 1;
r[11] = 0;
r[12] = x;
r[13] = y;
r[14] = z;
r[15] = 1;
return r;
};
/*
* Function: M4x4.makeTranslate1
*/
M4x4.makeTranslate1 = function M4x4_makeTranslate1 (k, r) {
return M4x4.makeTranslate3(k, k, k, r);
};
/*
* Function: M4x4.makeTranslate
*/
M4x4.makeTranslate = function M4x4_makeTranslate (v, r) {
return M4x4.makeTranslate3(v[0], v[1], v[2], r);
};
/*
* Function: M4x4.translate3Self
*/
M4x4.translate3Self = function M4x4_translate3Self (x, y, z, m) {
m[12] += m[0] * x + m[4] * y + m[8] * z;
m[13] += m[1] * x + m[5] * y + m[9] * z;
m[14] += m[2] * x + m[6] * y + m[10] * z;
m[15] += m[3] * x + m[7] * y + m[11] * z;
return m;
};
/*
* Function: M4x4.translate3
*/
M4x4.translate3 = function M4x4_translate3 (x, y, z, m, r) {
if (r == m) {
m[12] += m[0] * x + m[4] * y + m[8] * z;
m[13] += m[1] * x + m[5] * y + m[9] * z;
m[14] += m[2] * x + m[6] * y + m[10] * z;
m[15] += m[3] * x + m[7] * y + m[11] * z;
return m;
}
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
var m11 = m[0];
var m21 = m[1];
var m31 = m[2];
var m41 = m[3];
var m12 = m[4];
var m22 = m[5];
var m32 = m[6];
var m42 = m[7];
var m13 = m[8];
var m23 = m[9];
var m33 = m[10];
var m43 = m[11];
r[0] = m11;
r[1] = m21;
r[2] = m31;
r[3] = m41;
r[4] = m12;
r[5] = m22;
r[6] = m32;
r[7] = m42;
r[8] = m13;
r[9] = m23;
r[10] = m33;
r[11] = m43;
r[12] = m11 * x + m12 * y + m13 * z + m[12];
r[13] = m21 * x + m22 * y + m23 * z + m[13];
r[14] = m31 * x + m32 * y + m33 * z + m[14];
r[15] = m41 * x + m42 * y + m43 * z + m[15];
return r;
};
/*
* Function: M4x4.translate1
*/
M4x4.translate1 = function M4x4_translate1 (k, m, r) {
return M4x4.translate3(k, k, k, m, r);
};
/*
* Function: M4x4.translateSelf
*/
M4x4.translateSelf = function M4x4_translateSelf (v, m) {
var x=v[0], y=v[1], z=v[2];
m[12] += m[0] * x + m[4] * y + m[8] * z;
m[13] += m[1] * x + m[5] * y + m[9] * z;
m[14] += m[2] * x + m[6] * y + m[10] * z;
m[15] += m[3] * x + m[7] * y + m[11] * z;
return m;
};
/*
* Function: M4x4.translate
*/
M4x4.translate = function M4x4_translate (v, m, r) {
var x=v[0], y=v[1], z=v[2];
if (r == m) {
m[12] += m[0] * x + m[4] * y + m[8] * z;
m[13] += m[1] * x + m[5] * y + m[9] * z;
m[14] += m[2] * x + m[6] * y + m[10] * z;
m[15] += m[3] * x + m[7] * y + m[11] * z;
return m;
}
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
var m11 = m[0];
var m21 = m[1];
var m31 = m[2];
var m41 = m[3];
var m12 = m[4];
var m22 = m[5];
var m32 = m[6];
var m42 = m[7];
var m13 = m[8];
var m23 = m[9];
var m33 = m[10];
var m43 = m[11];
r[0] = m11;
r[1] = m21;
r[2] = m31;
r[3] = m41;
r[4] = m12;
r[5] = m22;
r[6] = m32;
r[7] = m42;
r[8] = m13;
r[9] = m23;
r[10] = m33;
r[11] = m43;
r[12] = m11 * x + m12 * y + m13 * z + m[12];
r[13] = m21 * x + m22 * y + m23 * z + m[13];
r[14] = m31 * x + m32 * y + m33 * z + m[14];
r[15] = m41 * x + m42 * y + m43 * z + m[15];
return r;
};
/*
* Function: M4x4.makeLookAt
*/
M4x4.makeLookAt = function M4x4_makeLookAt (eye, center, up, r) {
var z = V3.direction(eye, center, V3._temp1);
var x = V3.normalize(V3.cross(up, z, V3._temp2), V3._temp2);
var y = V3.normalize(V3.cross(z, x, V3._temp3), V3._temp3);
var tm1 = M4x4._temp1;
var tm2 = M4x4._temp2;
tm1[0] = x[0];
tm1[1] = y[0];
tm1[2] = z[0];
tm1[3] = 0;
tm1[4] = x[1];
tm1[5] = y[1];
tm1[6] = z[1];
tm1[7] = 0;
tm1[8] = x[2];
tm1[9] = y[2];
tm1[10] = z[2];
tm1[11] = 0;
tm1[12] = 0;
tm1[13] = 0;
tm1[14] = 0;
tm1[15] = 1;
tm2[0] = 1; tm2[1] = 0; tm2[2] = 0; tm2[3] = 0;
tm2[4] = 0; tm2[5] = 1; tm2[6] = 0; tm2[7] = 0;
tm2[8] = 0; tm2[9] = 0; tm2[10] = 1; tm2[11] = 0;
tm2[12] = -eye[0]; tm2[13] = -eye[1]; tm2[14] = -eye[2]; tm2[15] = 1;
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
return M4x4.mul(tm1, tm2, r);
};
/*
* Function: M4x4.transposeSelf
*/
M4x4.transposeSelf = function M4x4_transposeSelf (m) {
var tmp = m[1]; m[1] = m[4]; m[4] = tmp;
tmp = m[2]; m[2] = m[8]; m[8] = tmp;
tmp = m[3]; m[3] = m[12]; m[12] = tmp;
tmp = m[6]; m[6] = m[9]; m[9] = tmp;
tmp = m[7]; m[7] = m[13]; m[13] = tmp;
tmp = m[11]; m[11] = m[14]; m[14] = tmp;
return m;
};
/*
* Function: M4x4.transpose
*/
M4x4.transpose = function M4x4_transpose (m, r) {
if (m == r) {
var tmp = 0.0;
tmp = m[1]; m[1] = m[4]; m[4] = tmp;
tmp = m[2]; m[2] = m[8]; m[8] = tmp;
tmp = m[3]; m[3] = m[12]; m[12] = tmp;
tmp = m[6]; m[6] = m[9]; m[9] = tmp;
tmp = m[7]; m[7] = m[13]; m[13] = tmp;
tmp = m[11]; m[11] = m[14]; m[14] = tmp;
return m;
}
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(16);
r[0] = m[0]; r[1] = m[4]; r[2] = m[8]; r[3] = m[12];
r[4] = m[1]; r[5] = m[5]; r[6] = m[9]; r[7] = m[13];
r[8] = m[2]; r[9] = m[6]; r[10] = m[10]; r[11] = m[14];
r[12] = m[3]; r[13] = m[7]; r[14] = m[11]; r[15] = m[15];
return r;
};
/*
* Function: M4x4.transformPoint
*/
M4x4.transformPoint = function M4x4_transformPoint (m, v, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(3);
var v0 = v[0], v1 = v[1], v2 = v[2];
r[0] = m[0] * v0 + m[4] * v1 + m[8] * v2 + m[12];
r[1] = m[1] * v0 + m[5] * v1 + m[9] * v2 + m[13];
r[2] = m[2] * v0 + m[6] * v1 + m[10] * v2 + m[14];
var w = m[3] * v0 + m[7] * v1 + m[11] * v2 + m[15];
if (w != 1.0) {
r[0] /= w;
r[1] /= w;
r[2] /= w;
}
return r;
};
/*
* Function: M4x4.transformLine
*/
M4x4.transformLine = function M4x4_transformLine(m, v, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(3);
var v0 = v[0], v1 = v[1], v2 = v[2];
r[0] = m[0] * v0 + m[4] * v1 + m[8] * v2;
r[1] = m[1] * v0 + m[5] * v1 + m[9] * v2;
r[2] = m[2] * v0 + m[6] * v1 + m[10] * v2;
var w = m[3] * v0 + m[7] * v1 + m[11] * v2;
if (w != 1.0) {
r[0] /= w;
r[1] /= w;
r[2] /= w;
}
return r;
};
/*
* Function: M4x4.transformPointAffine
*/
M4x4.transformPointAffine = function M4x4_transformPointAffine (m, v, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(3);
var v0 = v[0], v1 = v[1], v2 = v[2];
r[0] = m[0] * v0 + m[4] * v1 + m[8] * v2 + m[12];
r[1] = m[1] * v0 + m[5] * v1 + m[9] * v2 + m[13];
r[2] = m[2] * v0 + m[6] * v1 + m[10] * v2 + m[14];
return r;
};
/*
* Function: M4x4.transformLineAffine
*/
M4x4.transformLineAffine = function M4x4_transformLineAffine(m, v, r) {
if (r == undefined)
r = new MJS_FLOAT_ARRAY_TYPE(3);
var v0 = v[0], v1 = v[1], v2 = v[2];
r[0] = m[0] * v0 + m[4] * v1 + m[8] * v2;
r[1] = m[1] * v0 + m[5] * v1 + m[9] * v2;
r[2] = m[2] * v0 + m[6] * v1 + m[10] * v2;
return r;
};
return mJS;
}