UNPKG

miscreant

Version:

Misuse resistant symmetric encryption library providing AES-SIV (RFC 5297), AES-PMAC-SIV, and STREAM constructions

268 lines (267 loc) 11.1 kB
"use strict"; // Copyright (C) 2016-2017 Dmitry Chestnykh, Tony Arcieri // MIT License. See LICENSE file for details. Object.defineProperty(exports, "__esModule", { value: true }); const wipe_1 = require("../../internals/wipe"); // Powers of x mod poly in GF(2). const POWX = new Uint8Array([ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, ]); // FIPS-197 Figure 7. S-box substitution values in hexadecimal format. const SBOX0 = new Uint8Array([ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16, ]); // FIPS-197 Figure 14. Inverse S-box substitution values in hexadecimal format. const SBOX1 = new Uint8Array([ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d, ]); // Encryption and decryption tables. // Will be computed by initialize() when the first AES instance is created. let isInitialized = false; let Te0; let Te1; let Te2; let Te3; let Td0; let Td1; let Td2; let Td3; /** * Polyfill for the AES block cipher. * * This implementation uses lookup tables, so it's susceptible to cache-timing * side-channel attacks. A constant-time version we tried was super slow (a few * kilobytes per second), so we'll have to live with it. * * Key size: 16 or 32 bytes, block size: 16 bytes. */ class PolyfillAes { /** * Constructs AES with the given 16 or 32-byte key * for AES-128 or AES-256. */ constructor(keyData) { if (!isInitialized) { initialize(); } // Only AES-128 and AES-256 supported. AES-192 is not. if (keyData.length !== 16 && keyData.length !== 32) { throw new Error(`Miscreant: invalid key length: ${keyData.length} (expected 16 or 32 bytes)`); } this._encKey = expandKey(keyData); this._emptyPromise = Promise.resolve(this); } /** * Cleans expanded keys from memory, setting them to zeros. */ clear() { if (this._encKey) { wipe_1.wipe(this._encKey); } return this; } /** * Encrypt 16-byte block in-place, replacing its contents with ciphertext. * * This function should not be used to encrypt data without any * cipher mode! It should only be used to implement a cipher mode. * This library uses it to implement AES-SIV. */ encryptBlock(block) { const src = block.data; const dst = block.data; let s0 = readUint32BE(src, 0); let s1 = readUint32BE(src, 4); let s2 = readUint32BE(src, 8); let s3 = readUint32BE(src, 12); // First round just XORs input with key. s0 ^= this._encKey[0]; s1 ^= this._encKey[1]; s2 ^= this._encKey[2]; s3 ^= this._encKey[3]; let t0 = 0; let t1 = 0; let t2 = 0; let t3 = 0; // Middle rounds shuffle using tables. // Number of rounds is set by length of expanded key. const nr = this._encKey.length / 4 - 2; // - 2: one above, one more below let k = 4; for (let r = 0; r < nr; r++) { t0 = this._encKey[k + 0] ^ Te0[(s0 >>> 24) & 0xff] ^ Te1[(s1 >>> 16) & 0xff] ^ Te2[(s2 >>> 8) & 0xff] ^ Te3[s3 & 0xff]; t1 = this._encKey[k + 1] ^ Te0[(s1 >>> 24) & 0xff] ^ Te1[(s2 >>> 16) & 0xff] ^ Te2[(s3 >>> 8) & 0xff] ^ Te3[s0 & 0xff]; t2 = this._encKey[k + 2] ^ Te0[(s2 >>> 24) & 0xff] ^ Te1[(s3 >>> 16) & 0xff] ^ Te2[(s0 >>> 8) & 0xff] ^ Te3[s1 & 0xff]; t3 = this._encKey[k + 3] ^ Te0[(s3 >>> 24) & 0xff] ^ Te1[(s0 >>> 16) & 0xff] ^ Te2[(s1 >>> 8) & 0xff] ^ Te3[s2 & 0xff]; k += 4; s0 = t0; s1 = t1; s2 = t2; s3 = t3; } // Last round uses s-box directly and XORs to produce output. s0 = (SBOX0[t0 >>> 24] << 24) | (SBOX0[(t1 >>> 16) & 0xff]) << 16 | (SBOX0[(t2 >>> 8) & 0xff]) << 8 | (SBOX0[t3 & 0xff]); s1 = (SBOX0[t1 >>> 24] << 24) | (SBOX0[(t2 >>> 16) & 0xff]) << 16 | (SBOX0[(t3 >>> 8) & 0xff]) << 8 | (SBOX0[t0 & 0xff]); s2 = (SBOX0[t2 >>> 24] << 24) | (SBOX0[(t3 >>> 16) & 0xff]) << 16 | (SBOX0[(t0 >>> 8) & 0xff]) << 8 | (SBOX0[t1 & 0xff]); s3 = (SBOX0[t3 >>> 24] << 24) | (SBOX0[(t0 >>> 16) & 0xff]) << 16 | (SBOX0[(t1 >>> 8) & 0xff]) << 8 | (SBOX0[t2 & 0xff]); s0 ^= this._encKey[k + 0]; s1 ^= this._encKey[k + 1]; s2 ^= this._encKey[k + 2]; s3 ^= this._encKey[k + 3]; writeUint32BE(s0, dst, 0); writeUint32BE(s1, dst, 4); writeUint32BE(s2, dst, 8); writeUint32BE(s3, dst, 12); return this._emptyPromise; } } exports.default = PolyfillAes; // Initialize generates encryption and decryption tables. function initialize() { const poly = (1 << 8) | (1 << 4) | (1 << 3) | (1 << 1) | (1 << 0); function mul(b, c) { let i = b; let j = c; let s = 0; for (let k = 1; k < 0x100 && j !== 0; k <<= 1) { // Invariant: k == 1<<n, i == b * x^n if ((j & k) !== 0) { // s += i in GF(2); xor in binary s ^= i; j ^= k; // turn off bit to end loop early } // i *= x in GF(2) modulo the polynomial i <<= 1; if ((i & 0x100) !== 0) { i ^= poly; } } return s; } const rot = (x) => (x << 24) | (x >>> 8); // Generate encryption tables. Te0 = new Uint32Array(256); Te1 = new Uint32Array(256); Te2 = new Uint32Array(256); Te3 = new Uint32Array(256); for (let i = 0; i < 256; i++) { const s = SBOX0[i]; let w = (mul(s, 2) << 24) | (s << 16) | (s << 8) | mul(s, 3); Te0[i] = w; w = rot(w); Te1[i] = w; w = rot(w); Te2[i] = w; w = rot(w); Te3[i] = w; w = rot(w); } // Generate decryption tables. Td0 = new Uint32Array(256); Td1 = new Uint32Array(256); Td2 = new Uint32Array(256); Td3 = new Uint32Array(256); for (let i = 0; i < 256; i++) { const s = SBOX1[i]; let w = (mul(s, 0xe) << 24) | (mul(s, 0x9) << 16) | (mul(s, 0xd) << 8) | mul(s, 0xb); Td0[i] = w; w = rot(w); Td1[i] = w; w = rot(w); Td2[i] = w; w = rot(w); Td3[i] = w; w = rot(w); } isInitialized = true; } // Reads 4 bytes from array starting at offset as big-endian // unsigned 32-bit integer and returns it. function readUint32BE(array, offset = 0) { return ((array[offset] << 24) | (array[offset + 1] << 16) | (array[offset + 2] << 8) | array[offset + 3]) >>> 0; } // Writes 4-byte big-endian representation of 32-bit unsigned // value to byte array starting at offset. // // If byte array is not given, creates a new 4-byte one. // // Returns the output byte array. function writeUint32BE(value, out = new Uint8Array(4), offset = 0) { out[offset + 0] = value >>> 24; out[offset + 1] = value >>> 16; out[offset + 2] = value >>> 8; out[offset + 3] = value >>> 0; return out; } // Apply sbox0 to each byte in w. function subw(w) { return ((SBOX0[(w >>> 24) & 0xff]) << 24) | ((SBOX0[(w >>> 16) & 0xff]) << 16) | ((SBOX0[(w >>> 8) & 0xff]) << 8) | (SBOX0[w & 0xff]); } // Rotate function rotw(w) { return (w << 8) | (w >>> 24); } function expandKey(key) { const encKey = new Uint32Array(key.length + 28); const nk = key.length / 4 | 0; const n = encKey.length; for (let i = 0; i < nk; i++) { encKey[i] = readUint32BE(key, i * 4); } for (let i = nk; i < n; i++) { let t = encKey[i - 1]; if (i % nk === 0) { t = subw(rotw(t)) ^ (POWX[i / nk - 1] << 24); } else if (nk > 6 && i % nk === 4) { t = subw(t); } encKey[i] = encKey[i - nk] ^ t; } return encKey; }