UNPKG

minisearch

Version:

Tiny but powerful full-text search engine for browser and Node

1,312 lines (1,307 loc) 77.9 kB
'use strict'; /** @ignore */ const ENTRIES = 'ENTRIES'; /** @ignore */ const KEYS = 'KEYS'; /** @ignore */ const VALUES = 'VALUES'; /** @ignore */ const LEAF = ''; /** * @private */ class TreeIterator { constructor(set, type) { const node = set._tree; const keys = Array.from(node.keys()); this.set = set; this._type = type; this._path = keys.length > 0 ? [{ node, keys }] : []; } next() { const value = this.dive(); this.backtrack(); return value; } dive() { if (this._path.length === 0) { return { done: true, value: undefined }; } const { node, keys } = last$1(this._path); if (last$1(keys) === LEAF) { return { done: false, value: this.result() }; } const child = node.get(last$1(keys)); this._path.push({ node: child, keys: Array.from(child.keys()) }); return this.dive(); } backtrack() { if (this._path.length === 0) { return; } const keys = last$1(this._path).keys; keys.pop(); if (keys.length > 0) { return; } this._path.pop(); this.backtrack(); } key() { return this.set._prefix + this._path .map(({ keys }) => last$1(keys)) .filter(key => key !== LEAF) .join(''); } value() { return last$1(this._path).node.get(LEAF); } result() { switch (this._type) { case VALUES: return this.value(); case KEYS: return this.key(); default: return [this.key(), this.value()]; } } [Symbol.iterator]() { return this; } } const last$1 = (array) => { return array[array.length - 1]; }; /* eslint-disable no-labels */ /** * @ignore */ const fuzzySearch = (node, query, maxDistance) => { const results = new Map(); if (query === undefined) return results; // Number of columns in the Levenshtein matrix. const n = query.length + 1; // Matching terms can never be longer than N + maxDistance. const m = n + maxDistance; // Fill first matrix row and column with numbers: 0 1 2 3 ... const matrix = new Uint8Array(m * n).fill(maxDistance + 1); for (let j = 0; j < n; ++j) matrix[j] = j; for (let i = 1; i < m; ++i) matrix[i * n] = i; recurse(node, query, maxDistance, results, matrix, 1, n, ''); return results; }; // Modified version of http://stevehanov.ca/blog/?id=114 // This builds a Levenshtein matrix for a given query and continuously updates // it for nodes in the radix tree that fall within the given maximum edit // distance. Keeping the same matrix around is beneficial especially for larger // edit distances. // // k a t e <-- query // 0 1 2 3 4 // c 1 1 2 3 4 // a 2 2 1 2 3 // t 3 3 2 1 [2] <-- edit distance // ^ // ^ term in radix tree, rows are added and removed as needed const recurse = (node, query, maxDistance, results, matrix, m, n, prefix) => { const offset = m * n; key: for (const key of node.keys()) { if (key === LEAF) { // We've reached a leaf node. Check if the edit distance acceptable and // store the result if it is. const distance = matrix[offset - 1]; if (distance <= maxDistance) { results.set(prefix, [node.get(key), distance]); } } else { // Iterate over all characters in the key. Update the Levenshtein matrix // and check if the minimum distance in the last row is still within the // maximum edit distance. If it is, we can recurse over all child nodes. let i = m; for (let pos = 0; pos < key.length; ++pos, ++i) { const char = key[pos]; const thisRowOffset = n * i; const prevRowOffset = thisRowOffset - n; // Set the first column based on the previous row, and initialize the // minimum distance in the current row. let minDistance = matrix[thisRowOffset]; const jmin = Math.max(0, i - maxDistance - 1); const jmax = Math.min(n - 1, i + maxDistance); // Iterate over remaining columns (characters in the query). for (let j = jmin; j < jmax; ++j) { const different = char !== query[j]; // It might make sense to only read the matrix positions used for // deletion/insertion if the characters are different. But we want to // avoid conditional reads for performance reasons. const rpl = matrix[prevRowOffset + j] + +different; const del = matrix[prevRowOffset + j + 1] + 1; const ins = matrix[thisRowOffset + j] + 1; const dist = matrix[thisRowOffset + j + 1] = Math.min(rpl, del, ins); if (dist < minDistance) minDistance = dist; } // Because distance will never decrease, we can stop. There will be no // matching child nodes. if (minDistance > maxDistance) { continue key; } } recurse(node.get(key), query, maxDistance, results, matrix, i, n, prefix + key); } } }; /* eslint-disable no-labels */ /** * A class implementing the same interface as a standard JavaScript * [`Map`](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map) * with string keys, but adding support for efficiently searching entries with * prefix or fuzzy search. This class is used internally by {@link MiniSearch} * as the inverted index data structure. The implementation is a radix tree * (compressed prefix tree). * * Since this class can be of general utility beyond _MiniSearch_, it is * exported by the `minisearch` package and can be imported (or required) as * `minisearch/SearchableMap`. * * @typeParam T The type of the values stored in the map. */ class SearchableMap { /** * The constructor is normally called without arguments, creating an empty * map. In order to create a {@link SearchableMap} from an iterable or from an * object, check {@link SearchableMap.from} and {@link * SearchableMap.fromObject}. * * The constructor arguments are for internal use, when creating derived * mutable views of a map at a prefix. */ constructor(tree = new Map(), prefix = '') { this._size = undefined; this._tree = tree; this._prefix = prefix; } /** * Creates and returns a mutable view of this {@link SearchableMap}, * containing only entries that share the given prefix. * * ### Usage: * * ```javascript * let map = new SearchableMap() * map.set("unicorn", 1) * map.set("universe", 2) * map.set("university", 3) * map.set("unique", 4) * map.set("hello", 5) * * let uni = map.atPrefix("uni") * uni.get("unique") // => 4 * uni.get("unicorn") // => 1 * uni.get("hello") // => undefined * * let univer = map.atPrefix("univer") * univer.get("unique") // => undefined * univer.get("universe") // => 2 * univer.get("university") // => 3 * ``` * * @param prefix The prefix * @return A {@link SearchableMap} representing a mutable view of the original * Map at the given prefix */ atPrefix(prefix) { if (!prefix.startsWith(this._prefix)) { throw new Error('Mismatched prefix'); } const [node, path] = trackDown(this._tree, prefix.slice(this._prefix.length)); if (node === undefined) { const [parentNode, key] = last(path); for (const k of parentNode.keys()) { if (k !== LEAF && k.startsWith(key)) { const node = new Map(); node.set(k.slice(key.length), parentNode.get(k)); return new SearchableMap(node, prefix); } } } return new SearchableMap(node, prefix); } /** * @see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/clear */ clear() { this._size = undefined; this._tree.clear(); } /** * @see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/delete * @param key Key to delete */ delete(key) { this._size = undefined; return remove(this._tree, key); } /** * @see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/entries * @return An iterator iterating through `[key, value]` entries. */ entries() { return new TreeIterator(this, ENTRIES); } /** * @see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/forEach * @param fn Iteration function */ forEach(fn) { for (const [key, value] of this) { fn(key, value, this); } } /** * Returns a Map of all the entries that have a key within the given edit * distance from the search key. The keys of the returned Map are the matching * keys, while the values are two-element arrays where the first element is * the value associated to the key, and the second is the edit distance of the * key to the search key. * * ### Usage: * * ```javascript * let map = new SearchableMap() * map.set('hello', 'world') * map.set('hell', 'yeah') * map.set('ciao', 'mondo') * * // Get all entries that match the key 'hallo' with a maximum edit distance of 2 * map.fuzzyGet('hallo', 2) * // => Map(2) { 'hello' => ['world', 1], 'hell' => ['yeah', 2] } * * // In the example, the "hello" key has value "world" and edit distance of 1 * // (change "e" to "a"), the key "hell" has value "yeah" and edit distance of 2 * // (change "e" to "a", delete "o") * ``` * * @param key The search key * @param maxEditDistance The maximum edit distance (Levenshtein) * @return A Map of the matching keys to their value and edit distance */ fuzzyGet(key, maxEditDistance) { return fuzzySearch(this._tree, key, maxEditDistance); } /** * @see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/get * @param key Key to get * @return Value associated to the key, or `undefined` if the key is not * found. */ get(key) { const node = lookup(this._tree, key); return node !== undefined ? node.get(LEAF) : undefined; } /** * @see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/has * @param key Key * @return True if the key is in the map, false otherwise */ has(key) { const node = lookup(this._tree, key); return node !== undefined && node.has(LEAF); } /** * @see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/keys * @return An `Iterable` iterating through keys */ keys() { return new TreeIterator(this, KEYS); } /** * @see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/set * @param key Key to set * @param value Value to associate to the key * @return The {@link SearchableMap} itself, to allow chaining */ set(key, value) { if (typeof key !== 'string') { throw new Error('key must be a string'); } this._size = undefined; const node = createPath(this._tree, key); node.set(LEAF, value); return this; } /** * @see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/size */ get size() { if (this._size) { return this._size; } /** @ignore */ this._size = 0; const iter = this.entries(); while (!iter.next().done) this._size += 1; return this._size; } /** * Updates the value at the given key using the provided function. The function * is called with the current value at the key, and its return value is used as * the new value to be set. * * ### Example: * * ```javascript * // Increment the current value by one * searchableMap.update('somekey', (currentValue) => currentValue == null ? 0 : currentValue + 1) * ``` * * If the value at the given key is or will be an object, it might not require * re-assignment. In that case it is better to use `fetch()`, because it is * faster. * * @param key The key to update * @param fn The function used to compute the new value from the current one * @return The {@link SearchableMap} itself, to allow chaining */ update(key, fn) { if (typeof key !== 'string') { throw new Error('key must be a string'); } this._size = undefined; const node = createPath(this._tree, key); node.set(LEAF, fn(node.get(LEAF))); return this; } /** * Fetches the value of the given key. If the value does not exist, calls the * given function to create a new value, which is inserted at the given key * and subsequently returned. * * ### Example: * * ```javascript * const map = searchableMap.fetch('somekey', () => new Map()) * map.set('foo', 'bar') * ``` * * @param key The key to update * @param initial A function that creates a new value if the key does not exist * @return The existing or new value at the given key */ fetch(key, initial) { if (typeof key !== 'string') { throw new Error('key must be a string'); } this._size = undefined; const node = createPath(this._tree, key); let value = node.get(LEAF); if (value === undefined) { node.set(LEAF, value = initial()); } return value; } /** * @see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/values * @return An `Iterable` iterating through values. */ values() { return new TreeIterator(this, VALUES); } /** * @see https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/@@iterator */ [Symbol.iterator]() { return this.entries(); } /** * Creates a {@link SearchableMap} from an `Iterable` of entries * * @param entries Entries to be inserted in the {@link SearchableMap} * @return A new {@link SearchableMap} with the given entries */ static from(entries) { const tree = new SearchableMap(); for (const [key, value] of entries) { tree.set(key, value); } return tree; } /** * Creates a {@link SearchableMap} from the iterable properties of a JavaScript object * * @param object Object of entries for the {@link SearchableMap} * @return A new {@link SearchableMap} with the given entries */ static fromObject(object) { return SearchableMap.from(Object.entries(object)); } } const trackDown = (tree, key, path = []) => { if (key.length === 0 || tree == null) { return [tree, path]; } for (const k of tree.keys()) { if (k !== LEAF && key.startsWith(k)) { path.push([tree, k]); // performance: update in place return trackDown(tree.get(k), key.slice(k.length), path); } } path.push([tree, key]); // performance: update in place return trackDown(undefined, '', path); }; const lookup = (tree, key) => { if (key.length === 0 || tree == null) { return tree; } for (const k of tree.keys()) { if (k !== LEAF && key.startsWith(k)) { return lookup(tree.get(k), key.slice(k.length)); } } }; // Create a path in the radix tree for the given key, and returns the deepest // node. This function is in the hot path for indexing. It avoids unnecessary // string operations and recursion for performance. const createPath = (node, key) => { const keyLength = key.length; outer: for (let pos = 0; node && pos < keyLength;) { for (const k of node.keys()) { // Check whether this key is a candidate: the first characters must match. if (k !== LEAF && key[pos] === k[0]) { const len = Math.min(keyLength - pos, k.length); // Advance offset to the point where key and k no longer match. let offset = 1; while (offset < len && key[pos + offset] === k[offset]) ++offset; const child = node.get(k); if (offset === k.length) { // The existing key is shorter than the key we need to create. node = child; } else { // Partial match: we need to insert an intermediate node to contain // both the existing subtree and the new node. const intermediate = new Map(); intermediate.set(k.slice(offset), child); node.set(key.slice(pos, pos + offset), intermediate); node.delete(k); node = intermediate; } pos += offset; continue outer; } } // Create a final child node to contain the final suffix of the key. const child = new Map(); node.set(key.slice(pos), child); return child; } return node; }; const remove = (tree, key) => { const [node, path] = trackDown(tree, key); if (node === undefined) { return; } node.delete(LEAF); if (node.size === 0) { cleanup(path); } else if (node.size === 1) { const [key, value] = node.entries().next().value; merge(path, key, value); } }; const cleanup = (path) => { if (path.length === 0) { return; } const [node, key] = last(path); node.delete(key); if (node.size === 0) { cleanup(path.slice(0, -1)); } else if (node.size === 1) { const [key, value] = node.entries().next().value; if (key !== LEAF) { merge(path.slice(0, -1), key, value); } } }; const merge = (path, key, value) => { if (path.length === 0) { return; } const [node, nodeKey] = last(path); node.set(nodeKey + key, value); node.delete(nodeKey); }; const last = (array) => { return array[array.length - 1]; }; const OR = 'or'; const AND = 'and'; const AND_NOT = 'and_not'; /** * {@link MiniSearch} is the main entrypoint class, implementing a full-text * search engine in memory. * * @typeParam T The type of the documents being indexed. * * ### Basic example: * * ```javascript * const documents = [ * { * id: 1, * title: 'Moby Dick', * text: 'Call me Ishmael. Some years ago...', * category: 'fiction' * }, * { * id: 2, * title: 'Zen and the Art of Motorcycle Maintenance', * text: 'I can see by my watch...', * category: 'fiction' * }, * { * id: 3, * title: 'Neuromancer', * text: 'The sky above the port was...', * category: 'fiction' * }, * { * id: 4, * title: 'Zen and the Art of Archery', * text: 'At first sight it must seem...', * category: 'non-fiction' * }, * // ...and more * ] * * // Create a search engine that indexes the 'title' and 'text' fields for * // full-text search. Search results will include 'title' and 'category' (plus the * // id field, that is always stored and returned) * const miniSearch = new MiniSearch({ * fields: ['title', 'text'], * storeFields: ['title', 'category'] * }) * * // Add documents to the index * miniSearch.addAll(documents) * * // Search for documents: * let results = miniSearch.search('zen art motorcycle') * // => [ * // { id: 2, title: 'Zen and the Art of Motorcycle Maintenance', category: 'fiction', score: 2.77258 }, * // { id: 4, title: 'Zen and the Art of Archery', category: 'non-fiction', score: 1.38629 } * // ] * ``` */ class MiniSearch { /** * @param options Configuration options * * ### Examples: * * ```javascript * // Create a search engine that indexes the 'title' and 'text' fields of your * // documents: * const miniSearch = new MiniSearch({ fields: ['title', 'text'] }) * ``` * * ### ID Field: * * ```javascript * // Your documents are assumed to include a unique 'id' field, but if you want * // to use a different field for document identification, you can set the * // 'idField' option: * const miniSearch = new MiniSearch({ idField: 'key', fields: ['title', 'text'] }) * ``` * * ### Options and defaults: * * ```javascript * // The full set of options (here with their default value) is: * const miniSearch = new MiniSearch({ * // idField: field that uniquely identifies a document * idField: 'id', * * // extractField: function used to get the value of a field in a document. * // By default, it assumes the document is a flat object with field names as * // property keys and field values as string property values, but custom logic * // can be implemented by setting this option to a custom extractor function. * extractField: (document, fieldName) => document[fieldName], * * // tokenize: function used to split fields into individual terms. By * // default, it is also used to tokenize search queries, unless a specific * // `tokenize` search option is supplied. When tokenizing an indexed field, * // the field name is passed as the second argument. * tokenize: (string, _fieldName) => string.split(SPACE_OR_PUNCTUATION), * * // processTerm: function used to process each tokenized term before * // indexing. It can be used for stemming and normalization. Return a falsy * // value in order to discard a term. By default, it is also used to process * // search queries, unless a specific `processTerm` option is supplied as a * // search option. When processing a term from a indexed field, the field * // name is passed as the second argument. * processTerm: (term, _fieldName) => term.toLowerCase(), * * // searchOptions: default search options, see the `search` method for * // details * searchOptions: undefined, * * // fields: document fields to be indexed. Mandatory, but not set by default * fields: undefined * * // storeFields: document fields to be stored and returned as part of the * // search results. * storeFields: [] * }) * ``` */ constructor(options) { if ((options === null || options === void 0 ? void 0 : options.fields) == null) { throw new Error('MiniSearch: option "fields" must be provided'); } const autoVacuum = (options.autoVacuum == null || options.autoVacuum === true) ? defaultAutoVacuumOptions : options.autoVacuum; this._options = { ...defaultOptions, ...options, autoVacuum, searchOptions: { ...defaultSearchOptions, ...(options.searchOptions || {}) }, autoSuggestOptions: { ...defaultAutoSuggestOptions, ...(options.autoSuggestOptions || {}) } }; this._index = new SearchableMap(); this._documentCount = 0; this._documentIds = new Map(); this._idToShortId = new Map(); // Fields are defined during initialization, don't change, are few in // number, rarely need iterating over, and have string keys. Therefore in // this case an object is a better candidate than a Map to store the mapping // from field key to ID. this._fieldIds = {}; this._fieldLength = new Map(); this._avgFieldLength = []; this._nextId = 0; this._storedFields = new Map(); this._dirtCount = 0; this._currentVacuum = null; this._enqueuedVacuum = null; this._enqueuedVacuumConditions = defaultVacuumConditions; this.addFields(this._options.fields); } /** * Adds a document to the index * * @param document The document to be indexed */ add(document) { const { extractField, tokenize, processTerm, fields, idField } = this._options; const id = extractField(document, idField); if (id == null) { throw new Error(`MiniSearch: document does not have ID field "${idField}"`); } if (this._idToShortId.has(id)) { throw new Error(`MiniSearch: duplicate ID ${id}`); } const shortDocumentId = this.addDocumentId(id); this.saveStoredFields(shortDocumentId, document); for (const field of fields) { const fieldValue = extractField(document, field); if (fieldValue == null) continue; const tokens = tokenize(fieldValue.toString(), field); const fieldId = this._fieldIds[field]; const uniqueTerms = new Set(tokens).size; this.addFieldLength(shortDocumentId, fieldId, this._documentCount - 1, uniqueTerms); for (const term of tokens) { const processedTerm = processTerm(term, field); if (Array.isArray(processedTerm)) { for (const t of processedTerm) { this.addTerm(fieldId, shortDocumentId, t); } } else if (processedTerm) { this.addTerm(fieldId, shortDocumentId, processedTerm); } } } } /** * Adds all the given documents to the index * * @param documents An array of documents to be indexed */ addAll(documents) { for (const document of documents) this.add(document); } /** * Adds all the given documents to the index asynchronously. * * Returns a promise that resolves (to `undefined`) when the indexing is done. * This method is useful when index many documents, to avoid blocking the main * thread. The indexing is performed asynchronously and in chunks. * * @param documents An array of documents to be indexed * @param options Configuration options * @return A promise resolving to `undefined` when the indexing is done */ addAllAsync(documents, options = {}) { const { chunkSize = 10 } = options; const acc = { chunk: [], promise: Promise.resolve() }; const { chunk, promise } = documents.reduce(({ chunk, promise }, document, i) => { chunk.push(document); if ((i + 1) % chunkSize === 0) { return { chunk: [], promise: promise .then(() => new Promise(resolve => setTimeout(resolve, 0))) .then(() => this.addAll(chunk)) }; } else { return { chunk, promise }; } }, acc); return promise.then(() => this.addAll(chunk)); } /** * Removes the given document from the index. * * The document to remove must NOT have changed between indexing and removal, * otherwise the index will be corrupted. * * This method requires passing the full document to be removed (not just the * ID), and immediately removes the document from the inverted index, allowing * memory to be released. A convenient alternative is {@link * MiniSearch#discard}, which needs only the document ID, and has the same * visible effect, but delays cleaning up the index until the next vacuuming. * * @param document The document to be removed */ remove(document) { const { tokenize, processTerm, extractField, fields, idField } = this._options; const id = extractField(document, idField); if (id == null) { throw new Error(`MiniSearch: document does not have ID field "${idField}"`); } const shortId = this._idToShortId.get(id); if (shortId == null) { throw new Error(`MiniSearch: cannot remove document with ID ${id}: it is not in the index`); } for (const field of fields) { const fieldValue = extractField(document, field); if (fieldValue == null) continue; const tokens = tokenize(fieldValue.toString(), field); const fieldId = this._fieldIds[field]; const uniqueTerms = new Set(tokens).size; this.removeFieldLength(shortId, fieldId, this._documentCount, uniqueTerms); for (const term of tokens) { const processedTerm = processTerm(term, field); if (Array.isArray(processedTerm)) { for (const t of processedTerm) { this.removeTerm(fieldId, shortId, t); } } else if (processedTerm) { this.removeTerm(fieldId, shortId, processedTerm); } } } this._storedFields.delete(shortId); this._documentIds.delete(shortId); this._idToShortId.delete(id); this._fieldLength.delete(shortId); this._documentCount -= 1; } /** * Removes all the given documents from the index. If called with no arguments, * it removes _all_ documents from the index. * * @param documents The documents to be removed. If this argument is omitted, * all documents are removed. Note that, for removing all documents, it is * more efficient to call this method with no arguments than to pass all * documents. */ removeAll(documents) { if (documents) { for (const document of documents) this.remove(document); } else if (arguments.length > 0) { throw new Error('Expected documents to be present. Omit the argument to remove all documents.'); } else { this._index = new SearchableMap(); this._documentCount = 0; this._documentIds = new Map(); this._idToShortId = new Map(); this._fieldLength = new Map(); this._avgFieldLength = []; this._storedFields = new Map(); this._nextId = 0; } } /** * Discards the document with the given ID, so it won't appear in search results * * It has the same visible effect of {@link MiniSearch.remove} (both cause the * document to stop appearing in searches), but a different effect on the * internal data structures: * * - {@link MiniSearch#remove} requires passing the full document to be * removed as argument, and removes it from the inverted index immediately. * * - {@link MiniSearch#discard} instead only needs the document ID, and * works by marking the current version of the document as discarded, so it * is immediately ignored by searches. This is faster and more convenient * than {@link MiniSearch#remove}, but the index is not immediately * modified. To take care of that, vacuuming is performed after a certain * number of documents are discarded, cleaning up the index and allowing * memory to be released. * * After discarding a document, it is possible to re-add a new version, and * only the new version will appear in searches. In other words, discarding * and re-adding a document works exactly like removing and re-adding it. The * {@link MiniSearch.replace} method can also be used to replace a document * with a new version. * * #### Details about vacuuming * * Repetite calls to this method would leave obsolete document references in * the index, invisible to searches. Two mechanisms take care of cleaning up: * clean up during search, and vacuuming. * * - Upon search, whenever a discarded ID is found (and ignored for the * results), references to the discarded document are removed from the * inverted index entries for the search terms. This ensures that subsequent * searches for the same terms do not need to skip these obsolete references * again. * * - In addition, vacuuming is performed automatically by default (see the * `autoVacuum` field in {@link Options}) after a certain number of * documents are discarded. Vacuuming traverses all terms in the index, * cleaning up all references to discarded documents. Vacuuming can also be * triggered manually by calling {@link MiniSearch#vacuum}. * * @param id The ID of the document to be discarded */ discard(id) { const shortId = this._idToShortId.get(id); if (shortId == null) { throw new Error(`MiniSearch: cannot discard document with ID ${id}: it is not in the index`); } this._idToShortId.delete(id); this._documentIds.delete(shortId); this._storedFields.delete(shortId); (this._fieldLength.get(shortId) || []).forEach((fieldLength, fieldId) => { this.removeFieldLength(shortId, fieldId, this._documentCount, fieldLength); }); this._fieldLength.delete(shortId); this._documentCount -= 1; this._dirtCount += 1; this.maybeAutoVacuum(); } maybeAutoVacuum() { if (this._options.autoVacuum === false) { return; } const { minDirtFactor, minDirtCount, batchSize, batchWait } = this._options.autoVacuum; this.conditionalVacuum({ batchSize, batchWait }, { minDirtCount, minDirtFactor }); } /** * Discards the documents with the given IDs, so they won't appear in search * results * * It is equivalent to calling {@link MiniSearch#discard} for all the given * IDs, but with the optimization of triggering at most one automatic * vacuuming at the end. * * Note: to remove all documents from the index, it is faster and more * convenient to call {@link MiniSearch.removeAll} with no argument, instead * of passing all IDs to this method. */ discardAll(ids) { const autoVacuum = this._options.autoVacuum; try { this._options.autoVacuum = false; for (const id of ids) { this.discard(id); } } finally { this._options.autoVacuum = autoVacuum; } this.maybeAutoVacuum(); } /** * It replaces an existing document with the given updated version * * It works by discarding the current version and adding the updated one, so * it is functionally equivalent to calling {@link MiniSearch#discard} * followed by {@link MiniSearch#add}. The ID of the updated document should * be the same as the original one. * * Since it uses {@link MiniSearch#discard} internally, this method relies on * vacuuming to clean up obsolete document references from the index, allowing * memory to be released (see {@link MiniSearch#discard}). * * @param updatedDocument The updated document to replace the old version * with */ replace(updatedDocument) { const { idField, extractField } = this._options; const id = extractField(updatedDocument, idField); this.discard(id); this.add(updatedDocument); } /** * Triggers a manual vacuuming, cleaning up references to discarded documents * from the inverted index * * Vacuuming is only useful for applications that use the {@link * MiniSearch#discard} or {@link MiniSearch#replace} methods. * * By default, vacuuming is performed automatically when needed (controlled by * the `autoVacuum` field in {@link Options}), so there is usually no need to * call this method, unless one wants to make sure to perform vacuuming at a * specific moment. * * Vacuuming traverses all terms in the inverted index in batches, and cleans * up references to discarded documents from the posting list, allowing memory * to be released. * * The method takes an optional object as argument with the following keys: * * - `batchSize`: the size of each batch (1000 by default) * * - `batchWait`: the number of milliseconds to wait between batches (10 by * default) * * On large indexes, vacuuming could have a non-negligible cost: batching * avoids blocking the thread for long, diluting this cost so that it is not * negatively affecting the application. Nonetheless, this method should only * be called when necessary, and relying on automatic vacuuming is usually * better. * * It returns a promise that resolves (to undefined) when the clean up is * completed. If vacuuming is already ongoing at the time this method is * called, a new one is enqueued immediately after the ongoing one, and a * corresponding promise is returned. However, no more than one vacuuming is * enqueued on top of the ongoing one, even if this method is called more * times (enqueuing multiple ones would be useless). * * @param options Configuration options for the batch size and delay. See * {@link VacuumOptions}. */ vacuum(options = {}) { return this.conditionalVacuum(options); } conditionalVacuum(options, conditions) { // If a vacuum is already ongoing, schedule another as soon as it finishes, // unless there's already one enqueued. If one was already enqueued, do not // enqueue another on top, but make sure that the conditions are the // broadest. if (this._currentVacuum) { this._enqueuedVacuumConditions = this._enqueuedVacuumConditions && conditions; if (this._enqueuedVacuum != null) { return this._enqueuedVacuum; } this._enqueuedVacuum = this._currentVacuum.then(() => { const conditions = this._enqueuedVacuumConditions; this._enqueuedVacuumConditions = defaultVacuumConditions; return this.performVacuuming(options, conditions); }); return this._enqueuedVacuum; } if (this.vacuumConditionsMet(conditions) === false) { return Promise.resolve(); } this._currentVacuum = this.performVacuuming(options); return this._currentVacuum; } async performVacuuming(options, conditions) { const initialDirtCount = this._dirtCount; if (this.vacuumConditionsMet(conditions)) { const batchSize = options.batchSize || defaultVacuumOptions.batchSize; const batchWait = options.batchWait || defaultVacuumOptions.batchWait; let i = 1; for (const [term, fieldsData] of this._index) { for (const [fieldId, fieldIndex] of fieldsData) { for (const [shortId] of fieldIndex) { if (this._documentIds.has(shortId)) { continue; } if (fieldIndex.size <= 1) { fieldsData.delete(fieldId); } else { fieldIndex.delete(shortId); } } } if (this._index.get(term).size === 0) { this._index.delete(term); } if (i % batchSize === 0) { await new Promise((resolve) => setTimeout(resolve, batchWait)); } i += 1; } this._dirtCount -= initialDirtCount; } // Make the next lines always async, so they execute after this function returns await null; this._currentVacuum = this._enqueuedVacuum; this._enqueuedVacuum = null; } vacuumConditionsMet(conditions) { if (conditions == null) { return true; } let { minDirtCount, minDirtFactor } = conditions; minDirtCount = minDirtCount || defaultAutoVacuumOptions.minDirtCount; minDirtFactor = minDirtFactor || defaultAutoVacuumOptions.minDirtFactor; return this.dirtCount >= minDirtCount && this.dirtFactor >= minDirtFactor; } /** * Is `true` if a vacuuming operation is ongoing, `false` otherwise */ get isVacuuming() { return this._currentVacuum != null; } /** * The number of documents discarded since the most recent vacuuming */ get dirtCount() { return this._dirtCount; } /** * A number between 0 and 1 giving an indication about the proportion of * documents that are discarded, and can therefore be cleaned up by vacuuming. * A value close to 0 means that the index is relatively clean, while a higher * value means that the index is relatively dirty, and vacuuming could release * memory. */ get dirtFactor() { return this._dirtCount / (1 + this._documentCount + this._dirtCount); } /** * Returns `true` if a document with the given ID is present in the index and * available for search, `false` otherwise * * @param id The document ID */ has(id) { return this._idToShortId.has(id); } /** * Returns the stored fields (as configured in the `storeFields` constructor * option) for the given document ID. Returns `undefined` if the document is * not present in the index. * * @param id The document ID */ getStoredFields(id) { const shortId = this._idToShortId.get(id); if (shortId == null) { return undefined; } return this._storedFields.get(shortId); } /** * Search for documents matching the given search query. * * The result is a list of scored document IDs matching the query, sorted by * descending score, and each including data about which terms were matched and * in which fields. * * ### Basic usage: * * ```javascript * // Search for "zen art motorcycle" with default options: terms have to match * // exactly, and individual terms are joined with OR * miniSearch.search('zen art motorcycle') * // => [ { id: 2, score: 2.77258, match: { ... } }, { id: 4, score: 1.38629, match: { ... } } ] * ``` * * ### Restrict search to specific fields: * * ```javascript * // Search only in the 'title' field * miniSearch.search('zen', { fields: ['title'] }) * ``` * * ### Field boosting: * * ```javascript * // Boost a field * miniSearch.search('zen', { boost: { title: 2 } }) * ``` * * ### Prefix search: * * ```javascript * // Search for "moto" with prefix search (it will match documents * // containing terms that start with "moto" or "neuro") * miniSearch.search('moto neuro', { prefix: true }) * ``` * * ### Fuzzy search: * * ```javascript * // Search for "ismael" with fuzzy search (it will match documents containing * // terms similar to "ismael", with a maximum edit distance of 0.2 term.length * // (rounded to nearest integer) * miniSearch.search('ismael', { fuzzy: 0.2 }) * ``` * * ### Combining strategies: * * ```javascript * // Mix of exact match, prefix search, and fuzzy search * miniSearch.search('ismael mob', { * prefix: true, * fuzzy: 0.2 * }) * ``` * * ### Advanced prefix and fuzzy search: * * ```javascript * // Perform fuzzy and prefix search depending on the search term. Here * // performing prefix and fuzzy search only on terms longer than 3 characters * miniSearch.search('ismael mob', { * prefix: term => term.length > 3 * fuzzy: term => term.length > 3 ? 0.2 : null * }) * ``` * * ### Combine with AND: * * ```javascript * // Combine search terms with AND (to match only documents that contain both * // "motorcycle" and "art") * miniSearch.search('motorcycle art', { combineWith: 'AND' }) * ``` * * ### Combine with AND_NOT: * * There is also an AND_NOT combinator, that finds documents that match the * first term, but do not match any of the other terms. This combinator is * rarely useful with simple queries, and is meant to be used with advanced * query combinations (see later for more details). * * ### Filtering results: * * ```javascript * // Filter only results in the 'fiction' category (assuming that 'category' * // is a stored field) * miniSearch.search('motorcycle art', { * filter: (result) => result.category === 'fiction' * }) * ``` * * ### Wildcard query * * Searching for an empty string (assuming the default tokenizer) returns no * results. Sometimes though, one needs to match all documents, like in a * "wildcard" search. This is possible by passing the special value * {@link MiniSearch.wildcard} as the query: * * ```javascript * // Return search results for all documents * miniSearch.search(MiniSearch.wildcard) * ``` * * Note that search options such as `filter` and `boostDocument` are still * applied, influencing which results are returned, and their order: * * ```javascript * // Return search results for all documents in the 'fiction' category * miniSearch.search(MiniSearch.wildcard, { * filter: (result) => result.category === 'fiction' * }) * ``` * * ### Advanced combination of queries: * * It is possible to combine different subqueries with OR, AND, and AND_NOT, * and even with different search options, by passing a query expression * tree object as the first argument, instead of a string. * * ```javascript * // Search for documents that contain "zen" and ("motorcycle" or "archery") * miniSearch.search({ * combineWith: 'AND', * queries: [ * 'zen', * { * combineWith: 'OR', * queries: ['motorcycle', 'archery'] * } * ] * }) * * // Search for documents that contain ("apple" or "pear") but not "juice" and * // not "tree" * miniSearch.search({ * combineWith: 'AND_NOT', * queries: [ * { * combineWith: 'OR', * queries: ['apple', 'pear'] * }, * 'juice', * 'tree' * ] * }) * ``` * * Each node in the expression tree can be either a string, or an object that * supports all {@link SearchOptions} fields, plus a `queries` array field for * subqueries. * * Note that, while this can become complicated to do by hand for complex or * deeply nested queries, it provides a formalized expression tree API for * external libraries that implement a parser for custom query languages. * * @param query Search query * @param searchOptions Search options. Each option, if not given, defaults to the corresponding value of `searchOptions` given to the constructor, or to the library default. */ search(query, searchOptions = {}) { const { searchOptions: globalSearchOptions } = this._options; const searchOptionsWithDefaults = { ...globalSearchOptions, ...searchOptions }; const rawResults = this.executeQuery(query, searchOptions); const results = []; for (const [docId, { score, terms, match }] of rawResults) { // terms are the matched query terms, which will be returned to the user // as queryTerms. The quality is calculated based on them, as opposed to // the matched terms in the document (which can be different due to // prefix and fuzzy match) const quality = terms.length || 1; const result = { id: this._documentIds.get(docId), score: score * quality, terms: Object.keys(match), queryTerms: terms, match }; Object.assign(result, this._storedFields.get(docId)); if (searchOptionsWithDefaults.filter == null || searchOptionsWithDefaults.filter(result)) { results.push(result); } } // If it's a wildcard query, and no document boost is applied, skip sorting // the results, as all results have the same score of 1 if (query === MiniSearch.wildcard && searchOptionsWithDefaults.boostDocument == null) { return results; } results.sort(byScore); return results; }