UNPKG

min-heap-typed

Version:
303 lines (302 loc) 17.5 kB
/** * data-structure-typed * * @author Pablo Zeng * @copyright Copyright (c) 2022 Pablo Zeng <zrwusa@gmail.com> * @license MIT License */ import { BST, BSTNode } from './bst'; import type { AVLTreeOptions, BinaryTreeDeleteResult, BSTNOptKeyOrNode, EntryCallback } from '../../types'; import { IBinaryTree } from '../../interfaces'; export declare class AVLTreeNode<K = any, V = any> extends BSTNode<K, V> { parent?: AVLTreeNode<K, V>; /** * This TypeScript constructor function initializes an instance with a key and an optional value. * @param {K} key - The `key` parameter is typically used to uniquely identify an object or element * within a data structure. It serves as a reference or identifier for accessing or manipulating the * associated value or data. * @param {V} [value] - The `value` parameter in the constructor is optional, meaning it does not * have to be provided when creating an instance of the class. If a value is not provided, it will * default to `undefined`. */ constructor(key: K, value?: V); _left?: AVLTreeNode<K, V> | null | undefined; get left(): AVLTreeNode<K, V> | null | undefined; set left(v: AVLTreeNode<K, V> | null | undefined); _right?: AVLTreeNode<K, V> | null | undefined; get right(): AVLTreeNode<K, V> | null | undefined; set right(v: AVLTreeNode<K, V> | null | undefined); } /** * 1. Height-Balanced: Each node's left and right subtrees differ in height by no more than one. * 2. Automatic Rebalancing: AVL trees rebalance themselves automatically during insertions and deletions. * 3. Rotations for Balancing: Utilizes rotations (single or double) to maintain balance after updates. * 4. Order Preservation: Maintains the binary search tree property where left child values are less than the parent, and right child values are greater. * 5. Efficient Lookups: Offers O(log n) search time, where 'n' is the number of nodes, due to its balanced nature. * 6. Complex Insertions and Deletions: Due to rebalancing, these operations are more complex than in a regular BST. * 7. Path Length: The path length from the root to any leaf is longer compared to an unbalanced BST, but shorter than a linear chain of nodes. * @example * // Find elements in a range * // In interval queries, AVL trees, with their strictly balanced structure and lower height, offer better query efficiency, making them ideal for frequent and high-performance interval queries. In contrast, Red-Black trees, with lower update costs, are more suitable for scenarios involving frequent insertions and deletions where the requirements for interval queries are less demanding. * type Datum = { timestamp: Date; temperature: number }; * // Fixed dataset of CPU temperature readings * const cpuData: Datum[] = [ * { timestamp: new Date('2024-12-02T00:00:00'), temperature: 55.1 }, * { timestamp: new Date('2024-12-02T00:01:00'), temperature: 56.3 }, * { timestamp: new Date('2024-12-02T00:02:00'), temperature: 54.8 }, * { timestamp: new Date('2024-12-02T00:03:00'), temperature: 57.2 }, * { timestamp: new Date('2024-12-02T00:04:00'), temperature: 58.0 }, * { timestamp: new Date('2024-12-02T00:05:00'), temperature: 59.4 }, * { timestamp: new Date('2024-12-02T00:06:00'), temperature: 60.1 }, * { timestamp: new Date('2024-12-02T00:07:00'), temperature: 61.3 }, * { timestamp: new Date('2024-12-02T00:08:00'), temperature: 62.0 }, * { timestamp: new Date('2024-12-02T00:09:00'), temperature: 63.5 }, * { timestamp: new Date('2024-12-02T00:10:00'), temperature: 64.0 }, * { timestamp: new Date('2024-12-02T00:11:00'), temperature: 62.8 }, * { timestamp: new Date('2024-12-02T00:12:00'), temperature: 61.5 }, * { timestamp: new Date('2024-12-02T00:13:00'), temperature: 60.2 }, * { timestamp: new Date('2024-12-02T00:14:00'), temperature: 59.8 }, * { timestamp: new Date('2024-12-02T00:15:00'), temperature: 58.6 }, * { timestamp: new Date('2024-12-02T00:16:00'), temperature: 57.4 }, * { timestamp: new Date('2024-12-02T00:17:00'), temperature: 56.2 }, * { timestamp: new Date('2024-12-02T00:18:00'), temperature: 55.7 }, * { timestamp: new Date('2024-12-02T00:19:00'), temperature: 54.5 }, * { timestamp: new Date('2024-12-02T00:20:00'), temperature: 53.2 }, * { timestamp: new Date('2024-12-02T00:21:00'), temperature: 52.8 }, * { timestamp: new Date('2024-12-02T00:22:00'), temperature: 51.9 }, * { timestamp: new Date('2024-12-02T00:23:00'), temperature: 50.5 }, * { timestamp: new Date('2024-12-02T00:24:00'), temperature: 49.8 }, * { timestamp: new Date('2024-12-02T00:25:00'), temperature: 48.7 }, * { timestamp: new Date('2024-12-02T00:26:00'), temperature: 47.5 }, * { timestamp: new Date('2024-12-02T00:27:00'), temperature: 46.3 }, * { timestamp: new Date('2024-12-02T00:28:00'), temperature: 45.9 }, * { timestamp: new Date('2024-12-02T00:29:00'), temperature: 45.0 } * ]; * * // Create an AVL tree to store CPU temperature data * const cpuTemperatureTree = new AVLTree<Date, number, Datum>(cpuData, { * toEntryFn: ({ timestamp, temperature }) => [timestamp, temperature] * }); * * // Query a specific time range (e.g., from 00:05 to 00:15) * const rangeStart = new Date('2024-12-02T00:05:00'); * const rangeEnd = new Date('2024-12-02T00:15:00'); * const rangeResults = cpuTemperatureTree.rangeSearch([rangeStart, rangeEnd], node => ({ * minute: node ? node.key.getMinutes() : 0, * temperature: cpuTemperatureTree.get(node ? node.key : undefined) * })); * * console.log(rangeResults); // [ * // { minute: 5, temperature: 59.4 }, * // { minute: 6, temperature: 60.1 }, * // { minute: 7, temperature: 61.3 }, * // { minute: 8, temperature: 62 }, * // { minute: 9, temperature: 63.5 }, * // { minute: 10, temperature: 64 }, * // { minute: 11, temperature: 62.8 }, * // { minute: 12, temperature: 61.5 }, * // { minute: 13, temperature: 60.2 }, * // { minute: 14, temperature: 59.8 }, * // { minute: 15, temperature: 58.6 } * // ] */ export declare class AVLTree<K = any, V = any, R = object, MK = any, MV = any, MR = object> extends BST<K, V, R, MK, MV, MR> implements IBinaryTree<K, V, R, MK, MV, MR> { /** * This TypeScript constructor initializes an AVLTree with keys, nodes, entries, or raw data provided * in an iterable format. * @param keysNodesEntriesOrRaws - The `keysNodesEntriesOrRaws` parameter in the constructor is an * iterable that can contain either ` K | AVLTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ` objects or `R` objects. It is * used to initialize the AVLTree with key-value pairs or raw data entries. If provided * @param [options] - The `options` parameter in the constructor is of type `AVLTreeOptions<K, V, * R>`. It is an optional parameter that allows you to specify additional options for configuring the * AVL tree. These options could include things like custom comparators, initial capacity, or any * other configuration settings specific */ constructor(keysNodesEntriesOrRaws?: Iterable<K | AVLTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined | R>, options?: AVLTreeOptions<K, V, R>); /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function creates a new AVL tree node with the given key and value. * @param {K} key - The key parameter is of type K, which represents the key of the node being * created. * @param {V} [value] - The "value" parameter is an optional parameter of type V. It represents the * value associated with the key in the node being created. * @returns The method is returning a new instance of the AVLTreeNode class, casted as the generic * type AVLTreeNode<K, V>. */ createNode(key: K, value?: V): AVLTreeNode<K, V>; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function creates a new AVL tree with the specified options and returns it. * @param {AVLTreeOptions} [options] - The `options` parameter is an optional object that can be * passed to the `createTree` function. It is used to customize the behavior of the AVL tree that is * being created. * @returns a new AVLTree object. */ createTree(options?: AVLTreeOptions<K, V, R>): AVLTree<K, V, R, MK, MV, MR>; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function checks if the input is an instance of AVLTreeNode. * @param {K | AVLTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The parameter * `keyNodeOrEntry` can be of type `R` or ` K | AVLTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined `. * @returns a boolean value indicating whether the input parameter `keyNodeOrEntry` is * an instance of the `AVLTreeNode` class. */ isNode(keyNodeOrEntry: K | AVLTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): keyNodeOrEntry is AVLTreeNode<K, V>; /** * Time Complexity: O(log n) * Space Complexity: O(log n) * * The function overrides the add method of a class and inserts a key-value pair into a data * structure, then balances the path. * @param { K | AVLTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The parameter * `keyNodeOrEntry` can accept values of type `R`, ` K | AVLTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined ` * @param {V} [value] - The `value` parameter is an optional value that you want to associate with * the key or node being added to the data structure. * @returns The method is returning a boolean value. */ add(keyNodeOrEntry: K | AVLTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined, value?: V): boolean; /** * Time Complexity: O(log n) * Space Complexity: O(log n) * * The function overrides the delete method in a TypeScript class, performs deletion, and then * balances the tree if necessary. * @param { K | AVLTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } keyNodeOrEntry - The `keyNodeOrEntry` * parameter in the `override delete` method can be one of the following types: * @returns The `delete` method is being overridden in this code snippet. It first calls the `delete` * method from the superclass (presumably a parent class) with the provided `predicate`, which could * be a key, node, entry, or a custom predicate. The result of this deletion operation is stored in * `deletedResults`, which is an array of `BinaryTreeDeleteResult` objects. */ delete(keyNodeOrEntry: K | AVLTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): BinaryTreeDeleteResult<AVLTreeNode<K, V>>[]; /** * Time Complexity: O(n) * Space Complexity: O(n) * * The `map` function in TypeScript overrides the default map behavior of an AVLTree data structure * by applying a callback function to each entry and creating a new AVLTree with the results. * @param callback - A function that will be called for each entry in the AVLTree. It takes four * arguments: the key, the value (which can be undefined), the index of the entry, and a reference to * the AVLTree itself. * @param [options] - The `options` parameter in the `override map` function is of type * `AVLTreeOptions<MK, MV, MR>`. It is an optional parameter that allows you to specify additional * options for the AVL tree being created during the mapping process. These options could include * custom comparators, initial * @param {any} [thisArg] - The `thisArg` parameter in the `override map` function is used to specify * the value of `this` when executing the `callback` function. It allows you to set the context * (value of `this`) within the callback function. This can be useful when you want to access * properties or * @returns The `map` method is returning a new AVLTree instance (`newTree`) with the entries * modified by the provided callback function. */ map(callback: EntryCallback<K, V | undefined, [MK, MV]>, options?: AVLTreeOptions<MK, MV, MR>, thisArg?: any): AVLTree<MK, MV, MR>; /** * Time Complexity: O(n) * Space Complexity: O(n) * * The function `clone` overrides the default cloning behavior to create a deep copy of a tree * structure. * @returns A cloned tree object is being returned. */ clone(): AVLTree<K, V, R, MK, MV, MR>; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The `_swapProperties` function swaps the key, value, and height properties between two nodes in a * binary search tree. * @param {BSTNOptKeyOrNode<K, AVLTreeNode<K, V>>} srcNode - The `srcNode` parameter represents either a node * object (`AVLTreeNode<K, V>`) or a key-value pair (`R`) that is being swapped with another node. * @param {BSTNOptKeyOrNode<K, AVLTreeNode<K, V>>} destNode - The `destNode` parameter is either an instance of * `R` or an instance of `BSTNOptKeyOrNode<K, AVLTreeNode<K, V>>`. * @returns The method is returning the `destNodeEnsured` object if both `srcNodeEnsured` and * `destNodeEnsured` are truthy. Otherwise, it returns `undefined`. */ protected _swapProperties(srcNode: BSTNOptKeyOrNode<K, AVLTreeNode<K, V>>, destNode: BSTNOptKeyOrNode<K, AVLTreeNode<K, V>>): AVLTreeNode<K, V> | undefined; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function calculates the balance factor of a node in a binary tree. * @param {AVLTreeNode<K, V>} node - The parameter "node" is of type "AVLTreeNode<K, V>", which likely represents a node in a * binary tree data structure. * @returns the balance factor of a given node. The balance factor is calculated by subtracting the * height of the left subtree from the height of the right subtree. */ protected _balanceFactor(node: AVLTreeNode<K, V>): number; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function updates the height of a node in a binary tree based on the heights of its left and * right children. * @param {AVLTreeNode<K, V>} node - The parameter "node" represents a node in a binary tree data structure. */ protected _updateHeight(node: AVLTreeNode<K, V>): void; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The `_balanceLL` function performs a left-left rotation to balance a binary search tree. * @param {AVLTreeNode<K, V>} A - A is a node in a binary tree. */ protected _balanceLL(A: AVLTreeNode<K, V>): void; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The `_balanceLR` function performs a left-right rotation to balance a binary tree. * @param {AVLTreeNode<K, V>} A - A is a node in a binary tree. */ protected _balanceLR(A: AVLTreeNode<K, V>): void; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function `_balanceRR` performs a right-right rotation to balance a binary tree. * @param {AVLTreeNode<K, V>} A - A is a node in a binary tree. */ protected _balanceRR(A: AVLTreeNode<K, V>): void; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function `_balanceRL` performs a right-left rotation to balance a binary tree. * @param {AVLTreeNode<K, V>} A - A is a node in a binary tree. */ protected _balanceRL(A: AVLTreeNode<K, V>): void; /** * Time Complexity: O(log n) * Space Complexity: O(1) * * The `_balancePath` function is used to update the heights of nodes and perform rotation operations * to restore balance in an AVL tree after inserting a node. * @param { K | AVLTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined } node - The `node` parameter can be of type `R` or * ` K | AVLTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined `. */ protected _balancePath(node: K | AVLTreeNode<K, V> | [K | null | undefined, V | undefined] | null | undefined): void; /** * Time Complexity: O(1) * Space Complexity: O(1) * * The function replaces an old node with a new node and sets the height of the new node to be the * same as the old node. * @param {AVLTreeNode<K, V>} oldNode - The `oldNode` parameter represents the node that needs to be replaced in * the data structure. * @param {AVLTreeNode<K, V>} newNode - The `newNode` parameter is the new node that will replace the `oldNode` in * the data structure. * @returns The method is returning the result of calling the `_replaceNode` method from the * superclass, with the `oldNode` and `newNode` as arguments. */ protected _replaceNode(oldNode: AVLTreeNode<K, V>, newNode: AVLTreeNode<K, V>): AVLTreeNode<K, V>; }