UNPKG

metacog

Version:

MCP server for meta-cognitive reasoning strategies and problem resolution.

195 lines (149 loc) 5.2 kB
# MetaCog MCP Server Multi-strategy reasoning and problem-solving server implementing the Model Context Protocol. Provides structured cognitive processing with 20+ reasoning strategies, cognitive state management, and unified reasoning chains. ## Overview The MetaCognition MCP Server orchestrates multiple reasoning strategies for complex problem-solving and analysis. It manages reasoning chains, cognitive states, and provides tools for autonomous decision-making, debugging, research, and optimization. ## Core Features - **Multi-Strategy Reasoning**: 20+ specialized strategies including Abductive, Bayesian, Causal, Sequential, Financial, and Ethical reasoning - **Cognitive State Management**: Parallel hypothesis exploration with superposition states and resolution mechanisms - **Reasoning Chain Orchestration**: Sequential strategy execution with convergence optimization - **Thought Management**: Dynamic branching, revision, and refinement of reasoning paths - **MCP Protocol Compliance**: Full WebSocket/stdio transport integration ## Available Tools | Tool | Function | |------|----------| | `metacognition` | Multi-strategy reasoning and cognitive state management | | `autonomous` | Decision engine with comprehensive strategy orchestration | | `debugger` | Code analysis and error resolution | | `markdown_master` | Markdown content creation and refactoring | | `research_pro` | Research synthesis with online search integration | | `deep_analysis` | Codebase and system analysis | | `optimus_prime` | Performance and resource optimization | | `wildcard` | Dynamic strategy selection | ## Reasoning Strategies **Logical**: Abductive, Deductive, Inductive, Analogical, ForwardChaining, BackwardChaining, Defeasible **Probabilistic**: Bayesian, FuzzyLogic **Structural**: PatternAnalysis, ConstraintSatisfaction **Causal**: Causal, Counterfactual, Empirical **Specialized**: Financial, Ethical, Sequential, CaseBased, HypothesisGeneration **Control**: MetacognitiveControl ## Installation ### NPM ```bash npm install @modelcontextprotocol/metacog npm run build npm start ``` ### Docker ```bash docker build -t mcp/metacog docker run --rm -i mcp/metacog ``` ## Configuration ### Claude Desktop ```json { "mcpServers": { "metacognition": { "command": "npx", "args": ["-y", "@modelcontextprotocol/metacog"] } } } ``` ### VS Code MCP ```json { "mcp": { "servers": { "metacognition": { "command": "npx", "args": ["-y", "@modelcontextprotocol/metacog"] } } } } ``` ## Usage Examples ### Basic Strategy Application ```json { "thought": "Analyzing market data for trend identification", "thoughtNumber": 1, "totalThoughts": 3, "nextThoughtNeeded": true, "strategy": "Bayesian", "strategy_input_data": { "prior": 0.6, "evidence_threshold": 0.8 } } ``` ### Cognitive Superposition ```json { "thought": "Exploring multiple causal hypotheses", "thoughtNumber": 1, "totalThoughts": 4, "nextThoughtNeeded": true, "cognitive_superposition_concepts": [ "supply chain disruption", "demand fluctuation", "competitive pressure", "regulatory changes" ] } ``` ### Unified Reasoning Chain ```json { "thought": "Comprehensive problem analysis", "thoughtNumber": 1, "totalThoughts": 1, "nextThoughtNeeded": false, "unified_reasoning_chain": true, "strategies": ["Causal", "Bayesian", "Sequential"], "convergence_target": 0.95, "cognitive_enhancement": true } ``` ## API Reference ### Core Inputs - `thought` (string): Current reasoning step or analysis - `thoughtNumber` (integer): Current step number - `totalThoughts` (integer): Estimated total steps (adjustable) - `nextThoughtNeeded` (boolean): Whether additional steps are required ### Advanced Features - `cognitive_superposition_concepts` (array): Create parallel hypothesis states - `cognitive_resolve_state_id` (string): Collapse superposition to single concept - `strategy` (enum): Select specific reasoning strategy - `unified_reasoning_chain` (boolean): Execute multi-strategy reasoning - `convergence_target` (number): Target confidence level (0.0-1.0) ### Strategy Parameters Different strategies accept specific input parameters via `strategy_input_data`: - **Bayesian**: `{ prior: number, evidence_threshold: number }` - **Causal**: `{ cause: string, effect: string }` - **Counterfactual**: `{ original_condition: string, altered_condition: string }` - **Financial**: `{ market_data: object, risk_tolerance: number }` - **Sequential**: `{ time_horizon: string, world_branches: boolean }` ## Environment Variables - `DISABLE_THOUGHT_LOGGING`: Disable console output of reasoning steps - `COGNITIVE_ENHANCEMENT`: Enable/disable cognitive superposition features - `CONVERGENCE_TARGET`: Default convergence threshold for reasoning chains ## Development ### Prerequisites - Node.js 18+ - TypeScript 4.9+ ### Build ```bash npm install npm run build npm test ``` ### Testing ```bash npm run test:strategies # Strategy validation npm run test:cognitive # Cognitive features npm run benchmark # Performance tests ``` ## License MIT & Apache-2.0