UNPKG

meshcentral

Version:

Web based remote computer management server

1,486 lines (1,328 loc) • 483 kB
// Note: Some Emscripten settings will significantly limit the speed of the generated code. // Note: Some Emscripten settings may limit the speed of the generated code. // The Module object: Our interface to the outside world. We import // and export values on it, and do the work to get that through // closure compiler if necessary. There are various ways Module can be used: // 1. Not defined. We create it here // 2. A function parameter, function(Module) { ..generated code.. } // 3. pre-run appended it, var Module = {}; ..generated code.. // 4. External script tag defines var Module. // We need to do an eval in order to handle the closure compiler // case, where this code here is minified but Module was defined // elsewhere (e.g. case 4 above). We also need to check if Module // already exists (e.g. case 3 above). // Note that if you want to run closure, and also to use Module // after the generated code, you will need to define var Module = {}; // before the code. Then that object will be used in the code, and you // can continue to use Module afterwards as well. var Module; if (!Module) Module = eval('(function() { try { return Module || {} } catch(e) { return {} } })()'); // Sometimes an existing Module object exists with properties // meant to overwrite the default module functionality. Here // we collect those properties and reapply _after_ we configure // the current environment's defaults to avoid having to be so // defensive during initialization. var moduleOverrides = {}; for (var key in Module) { if (Module.hasOwnProperty(key)) { moduleOverrides[key] = Module[key]; } } // The environment setup code below is customized to use Module. // *** Environment setup code *** var ENVIRONMENT_IS_NODE = typeof process === 'object' && typeof require === 'function'; var ENVIRONMENT_IS_WEB = typeof window === 'object'; var ENVIRONMENT_IS_WORKER = typeof importScripts === 'function'; var ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER; if (ENVIRONMENT_IS_NODE) { // Expose functionality in the same simple way that the shells work // Note that we pollute the global namespace here, otherwise we break in node if (!Module['print']) Module['print'] = function print(x) { process['stdout'].write(x + '\n'); }; if (!Module['printErr']) Module['printErr'] = function printErr(x) { process['stderr'].write(x + '\n'); }; var nodeFS = require('fs'); var nodePath = require('path'); Module['read'] = function read(filename, binary) { filename = nodePath['normalize'](filename); var ret = nodeFS['readFileSync'](filename); // The path is absolute if the normalized version is the same as the resolved. if (!ret && filename != nodePath['resolve'](filename)) { filename = path.join(__dirname, '..', 'src', filename); ret = nodeFS['readFileSync'](filename); } if (ret && !binary) ret = ret.toString(); return ret; }; Module['readBinary'] = function readBinary(filename) { return Module['read'](filename, true) }; Module['load'] = function load(f) { globalEval(read(f)); }; Module['arguments'] = process['argv'].slice(2); module['exports'] = Module; } else if (ENVIRONMENT_IS_SHELL) { if (!Module['print']) Module['print'] = print; if (typeof printErr != 'undefined') Module['printErr'] = printErr; // not present in v8 or older sm if (typeof read != 'undefined') { Module['read'] = read; } else { Module['read'] = function read() { throw 'no read() available (jsc?)' }; } Module['readBinary'] = function readBinary(f) { return read(f, 'binary'); }; if (typeof scriptArgs != 'undefined') { Module['arguments'] = scriptArgs; } else if (typeof arguments != 'undefined') { Module['arguments'] = arguments; } this['Module'] = Module; eval("if (typeof gc === 'function' && gc.toString().indexOf('[native code]') > 0) var gc = undefined"); // wipe out the SpiderMonkey shell 'gc' function, which can confuse closure (uses it as a minified name, and it is then initted to a non-falsey value unexpectedly) } else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) { Module['read'] = function read(url) { var xhr = new XMLHttpRequest(); xhr.open('GET', url, false); xhr.send(null); return xhr.responseText; }; if (typeof arguments != 'undefined') { Module['arguments'] = arguments; } if (typeof console !== 'undefined') { if (!Module['print']) Module['print'] = function print(x) { console.log(x); }; if (!Module['printErr']) Module['printErr'] = function printErr(x) { console.log(x); }; } else { // Probably a worker, and without console.log. We can do very little here... var TRY_USE_DUMP = false; if (!Module['print']) Module['print'] = (TRY_USE_DUMP && (typeof(dump) !== "undefined") ? (function(x) { dump(x); }) : (function(x) { // self.postMessage(x); // enable this if you want stdout to be sent as messages })); } if (ENVIRONMENT_IS_WEB) { this['Module'] = Module; } else { Module['load'] = importScripts; } } else { // Unreachable because SHELL is dependant on the others throw 'Unknown runtime environment. Where are we?'; } function globalEval(x) { eval.call(null, x); } if (!Module['load'] == 'undefined' && Module['read']) { Module['load'] = function load(f) { globalEval(Module['read'](f)); }; } if (!Module['print']) { Module['print'] = function(){}; } if (!Module['printErr']) { Module['printErr'] = Module['print']; } if (!Module['arguments']) { Module['arguments'] = []; } // *** Environment setup code *** // Closure helpers Module.print = Module['print']; Module.printErr = Module['printErr']; // Callbacks Module['preRun'] = []; Module['postRun'] = []; // Merge back in the overrides for (var key in moduleOverrides) { if (moduleOverrides.hasOwnProperty(key)) { Module[key] = moduleOverrides[key]; } } // === Auto-generated preamble library stuff === //======================================== // Runtime code shared with compiler //======================================== var Runtime = { stackSave: function () { return STACKTOP; }, stackRestore: function (stackTop) { STACKTOP = stackTop; }, forceAlign: function (target, quantum) { quantum = quantum || 4; if (quantum == 1) return target; if (isNumber(target) && isNumber(quantum)) { return Math.ceil(target/quantum)*quantum; } else if (isNumber(quantum) && isPowerOfTwo(quantum)) { return '(((' +target + ')+' + (quantum-1) + ')&' + -quantum + ')'; } return 'Math.ceil((' + target + ')/' + quantum + ')*' + quantum; }, isNumberType: function (type) { return type in Runtime.INT_TYPES || type in Runtime.FLOAT_TYPES; }, isPointerType: function isPointerType(type) { return type[type.length-1] == '*'; }, isStructType: function isStructType(type) { if (isPointerType(type)) return false; if (isArrayType(type)) return true; if (/<?{ ?[^}]* ?}>?/.test(type)) return true; // { i32, i8 } etc. - anonymous struct types // See comment in isStructPointerType() return type[0] == '%'; }, INT_TYPES: {"i1":0,"i8":0,"i16":0,"i32":0,"i64":0}, FLOAT_TYPES: {"float":0,"double":0}, or64: function (x, y) { var l = (x | 0) | (y | 0); var h = (Math.round(x / 4294967296) | Math.round(y / 4294967296)) * 4294967296; return l + h; }, and64: function (x, y) { var l = (x | 0) & (y | 0); var h = (Math.round(x / 4294967296) & Math.round(y / 4294967296)) * 4294967296; return l + h; }, xor64: function (x, y) { var l = (x | 0) ^ (y | 0); var h = (Math.round(x / 4294967296) ^ Math.round(y / 4294967296)) * 4294967296; return l + h; }, getNativeTypeSize: function (type) { switch (type) { case 'i1': case 'i8': return 1; case 'i16': return 2; case 'i32': return 4; case 'i64': return 8; case 'float': return 4; case 'double': return 8; default: { if (type[type.length-1] === '*') { return Runtime.QUANTUM_SIZE; // A pointer } else if (type[0] === 'i') { var bits = parseInt(type.substr(1)); assert(bits % 8 === 0); return bits/8; } else { return 0; } } } }, getNativeFieldSize: function (type) { return Math.max(Runtime.getNativeTypeSize(type), Runtime.QUANTUM_SIZE); }, dedup: function dedup(items, ident) { var seen = {}; if (ident) { return items.filter(function(item) { if (seen[item[ident]]) return false; seen[item[ident]] = true; return true; }); } else { return items.filter(function(item) { if (seen[item]) return false; seen[item] = true; return true; }); } }, set: function set() { var args = typeof arguments[0] === 'object' ? arguments[0] : arguments; var ret = {}; for (var i = 0; i < args.length; i++) { ret[args[i]] = 0; } return ret; }, STACK_ALIGN: 8, getAlignSize: function (type, size, vararg) { // we align i64s and doubles on 64-bit boundaries, unlike x86 if (vararg) return 8; if (!vararg && (type == 'i64' || type == 'double')) return 8; if (!type) return Math.min(size, 8); // align structures internally to 64 bits return Math.min(size || (type ? Runtime.getNativeFieldSize(type) : 0), Runtime.QUANTUM_SIZE); }, calculateStructAlignment: function calculateStructAlignment(type) { type.flatSize = 0; type.alignSize = 0; var diffs = []; var prev = -1; var index = 0; type.flatIndexes = type.fields.map(function(field) { index++; var size, alignSize; if (Runtime.isNumberType(field) || Runtime.isPointerType(field)) { size = Runtime.getNativeTypeSize(field); // pack char; char; in structs, also char[X]s. alignSize = Runtime.getAlignSize(field, size); } else if (Runtime.isStructType(field)) { if (field[1] === '0') { // this is [0 x something]. When inside another structure like here, it must be at the end, // and it adds no size // XXX this happens in java-nbody for example... assert(index === type.fields.length, 'zero-length in the middle!'); size = 0; if (Types.types[field]) { alignSize = Runtime.getAlignSize(null, Types.types[field].alignSize); } else { alignSize = type.alignSize || QUANTUM_SIZE; } } else { size = Types.types[field].flatSize; alignSize = Runtime.getAlignSize(null, Types.types[field].alignSize); } } else if (field[0] == 'b') { // bN, large number field, like a [N x i8] size = field.substr(1)|0; alignSize = 1; } else if (field[0] === '<') { // vector type size = alignSize = Types.types[field].flatSize; // fully aligned } else if (field[0] === 'i') { // illegal integer field, that could not be legalized because it is an internal structure field // it is ok to have such fields, if we just use them as markers of field size and nothing more complex size = alignSize = parseInt(field.substr(1))/8; assert(size % 1 === 0, 'cannot handle non-byte-size field ' + field); } else { assert(false, 'invalid type for calculateStructAlignment'); } if (type.packed) alignSize = 1; type.alignSize = Math.max(type.alignSize, alignSize); var curr = Runtime.alignMemory(type.flatSize, alignSize); // if necessary, place this on aligned memory type.flatSize = curr + size; if (prev >= 0) { diffs.push(curr-prev); } prev = curr; return curr; }); if (type.name_ && type.name_[0] === '[') { // arrays have 2 elements, so we get the proper difference. then we scale here. that way we avoid // allocating a potentially huge array for [999999 x i8] etc. type.flatSize = parseInt(type.name_.substr(1))*type.flatSize/2; } type.flatSize = Runtime.alignMemory(type.flatSize, type.alignSize); if (diffs.length == 0) { type.flatFactor = type.flatSize; } else if (Runtime.dedup(diffs).length == 1) { type.flatFactor = diffs[0]; } type.needsFlattening = (type.flatFactor != 1); return type.flatIndexes; }, generateStructInfo: function (struct, typeName, offset) { var type, alignment; if (typeName) { offset = offset || 0; type = (typeof Types === 'undefined' ? Runtime.typeInfo : Types.types)[typeName]; if (!type) return null; if (type.fields.length != struct.length) { printErr('Number of named fields must match the type for ' + typeName + ': possibly duplicate struct names. Cannot return structInfo'); return null; } alignment = type.flatIndexes; } else { var type = { fields: struct.map(function(item) { return item[0] }) }; alignment = Runtime.calculateStructAlignment(type); } var ret = { __size__: type.flatSize }; if (typeName) { struct.forEach(function(item, i) { if (typeof item === 'string') { ret[item] = alignment[i] + offset; } else { // embedded struct var key; for (var k in item) key = k; ret[key] = Runtime.generateStructInfo(item[key], type.fields[i], alignment[i]); } }); } else { struct.forEach(function(item, i) { ret[item[1]] = alignment[i]; }); } return ret; }, dynCall: function (sig, ptr, args) { if (args && args.length) { assert(args.length == sig.length-1); return FUNCTION_TABLE[ptr].apply(null, args); } else { assert(sig.length == 1); return FUNCTION_TABLE[ptr](); } }, addFunction: function (func) { var table = FUNCTION_TABLE; var ret = table.length; assert(ret % 2 === 0); table.push(func); for (var i = 0; i < 2-1; i++) table.push(0); return ret; }, removeFunction: function (index) { var table = FUNCTION_TABLE; table[index] = null; }, getAsmConst: function (code, numArgs) { // code is a constant string on the heap, so we can cache these if (!Runtime.asmConstCache) Runtime.asmConstCache = {}; var func = Runtime.asmConstCache[code]; if (func) return func; var args = []; for (var i = 0; i < numArgs; i++) { args.push(String.fromCharCode(36) + i); // $0, $1 etc } code = Pointer_stringify(code); if (code[0] === '"') { // tolerate EM_ASM("..code..") even though EM_ASM(..code..) is correct if (code.indexOf('"', 1) === code.length-1) { code = code.substr(1, code.length-2); } else { // something invalid happened, e.g. EM_ASM("..code($0)..", input) abort('invalid EM_ASM input |' + code + '|. Please use EM_ASM(..code..) (no quotes) or EM_ASM({ ..code($0).. }, input) (to input values)'); } } return Runtime.asmConstCache[code] = eval('(function(' + args.join(',') + '){ ' + code + ' })'); // new Function does not allow upvars in node }, warnOnce: function (text) { if (!Runtime.warnOnce.shown) Runtime.warnOnce.shown = {}; if (!Runtime.warnOnce.shown[text]) { Runtime.warnOnce.shown[text] = 1; Module.printErr(text); } }, funcWrappers: {}, getFuncWrapper: function (func, sig) { assert(sig); if (!Runtime.funcWrappers[func]) { Runtime.funcWrappers[func] = function dynCall_wrapper() { return Runtime.dynCall(sig, func, arguments); }; } return Runtime.funcWrappers[func]; }, UTF8Processor: function () { var buffer = []; var needed = 0; this.processCChar = function (code) { code = code & 0xFF; if (buffer.length == 0) { if ((code & 0x80) == 0x00) { // 0xxxxxxx return String.fromCharCode(code); } buffer.push(code); if ((code & 0xE0) == 0xC0) { // 110xxxxx needed = 1; } else if ((code & 0xF0) == 0xE0) { // 1110xxxx needed = 2; } else { // 11110xxx needed = 3; } return ''; } if (needed) { buffer.push(code); needed--; if (needed > 0) return ''; } var c1 = buffer[0]; var c2 = buffer[1]; var c3 = buffer[2]; var c4 = buffer[3]; var ret; if (buffer.length == 2) { ret = String.fromCharCode(((c1 & 0x1F) << 6) | (c2 & 0x3F)); } else if (buffer.length == 3) { ret = String.fromCharCode(((c1 & 0x0F) << 12) | ((c2 & 0x3F) << 6) | (c3 & 0x3F)); } else { // http://mathiasbynens.be/notes/javascript-encoding#surrogate-formulae var codePoint = ((c1 & 0x07) << 18) | ((c2 & 0x3F) << 12) | ((c3 & 0x3F) << 6) | (c4 & 0x3F); ret = String.fromCharCode( Math.floor((codePoint - 0x10000) / 0x400) + 0xD800, (codePoint - 0x10000) % 0x400 + 0xDC00); } buffer.length = 0; return ret; } this.processJSString = function processJSString(string) { string = unescape(encodeURIComponent(string)); var ret = []; for (var i = 0; i < string.length; i++) { ret.push(string.charCodeAt(i)); } return ret; } }, stackAlloc: function (size) { var ret = STACKTOP;STACKTOP = (STACKTOP + size)|0;STACKTOP = (((STACKTOP)+7)&-8);(assert((STACKTOP|0) < (STACK_MAX|0))|0); return ret; }, staticAlloc: function (size) { var ret = STATICTOP;STATICTOP = (STATICTOP + (assert(!staticSealed),size))|0;STATICTOP = (((STATICTOP)+7)&-8); return ret; }, dynamicAlloc: function (size) { var ret = DYNAMICTOP;DYNAMICTOP = (DYNAMICTOP + (assert(DYNAMICTOP > 0),size))|0;DYNAMICTOP = (((DYNAMICTOP)+7)&-8); if (DYNAMICTOP >= TOTAL_MEMORY) enlargeMemory();; return ret; }, alignMemory: function (size,quantum) { var ret = size = Math.ceil((size)/(quantum ? quantum : 8))*(quantum ? quantum : 8); return ret; }, makeBigInt: function (low,high,unsigned) { var ret = (unsigned ? ((low>>>0)+((high>>>0)*4294967296)) : ((low>>>0)+((high|0)*4294967296))); return ret; }, GLOBAL_BASE: 8, QUANTUM_SIZE: 4, __dummy__: 0 } Module['Runtime'] = Runtime; //======================================== // Runtime essentials //======================================== var __THREW__ = 0; // Used in checking for thrown exceptions. var setjmpId = 1; // Used in setjmp/longjmp var setjmpLabels = {}; var ABORT = false; // whether we are quitting the application. no code should run after this. set in exit() and abort() var EXITSTATUS = 0; var undef = 0; // tempInt is used for 32-bit signed values or smaller. tempBigInt is used // for 32-bit unsigned values or more than 32 bits. TODO: audit all uses of tempInt var tempValue, tempInt, tempBigInt, tempInt2, tempBigInt2, tempPair, tempBigIntI, tempBigIntR, tempBigIntS, tempBigIntP, tempBigIntD, tempDouble, tempFloat; var tempI64, tempI64b; var tempRet0, tempRet1, tempRet2, tempRet3, tempRet4, tempRet5, tempRet6, tempRet7, tempRet8, tempRet9; function assert(condition, text) { if (!condition) { abort('Assertion failed: ' + text); } } var globalScope = this; // C calling interface. A convenient way to call C functions (in C files, or // defined with extern "C"). // // Note: LLVM optimizations can inline and remove functions, after which you will not be // able to call them. Closure can also do so. To avoid that, add your function to // the exports using something like // // -s EXPORTED_FUNCTIONS='["_main", "_myfunc"]' // // @param ident The name of the C function (note that C++ functions will be name-mangled - use extern "C") // @param returnType The return type of the function, one of the JS types 'number', 'string' or 'array' (use 'number' for any C pointer, and // 'array' for JavaScript arrays and typed arrays; note that arrays are 8-bit). // @param argTypes An array of the types of arguments for the function (if there are no arguments, this can be ommitted). Types are as in returnType, // except that 'array' is not possible (there is no way for us to know the length of the array) // @param args An array of the arguments to the function, as native JS values (as in returnType) // Note that string arguments will be stored on the stack (the JS string will become a C string on the stack). // @return The return value, as a native JS value (as in returnType) function ccall(ident, returnType, argTypes, args) { return ccallFunc(getCFunc(ident), returnType, argTypes, args); } Module["ccall"] = ccall; // Returns the C function with a specified identifier (for C++, you need to do manual name mangling) function getCFunc(ident) { try { var func = Module['_' + ident]; // closure exported function if (!func) func = eval('_' + ident); // explicit lookup } catch(e) { } assert(func, 'Cannot call unknown function ' + ident + ' (perhaps LLVM optimizations or closure removed it?)'); return func; } // Internal function that does a C call using a function, not an identifier function ccallFunc(func, returnType, argTypes, args) { var stack = 0; function toC(value, type) { if (type == 'string') { if (value === null || value === undefined || value === 0) return 0; // null string value = intArrayFromString(value); type = 'array'; } if (type == 'array') { if (!stack) stack = Runtime.stackSave(); var ret = Runtime.stackAlloc(value.length); writeArrayToMemory(value, ret); return ret; } return value; } function fromC(value, type) { if (type == 'string') { return Pointer_stringify(value); } assert(type != 'array'); return value; } var i = 0; var cArgs = args ? args.map(function(arg) { return toC(arg, argTypes[i++]); }) : []; var ret = fromC(func.apply(null, cArgs), returnType); if (stack) Runtime.stackRestore(stack); return ret; } // Returns a native JS wrapper for a C function. This is similar to ccall, but // returns a function you can call repeatedly in a normal way. For example: // // var my_function = cwrap('my_c_function', 'number', ['number', 'number']); // alert(my_function(5, 22)); // alert(my_function(99, 12)); // function cwrap(ident, returnType, argTypes) { var func = getCFunc(ident); return function() { return ccallFunc(func, returnType, argTypes, Array.prototype.slice.call(arguments)); } } Module["cwrap"] = cwrap; // Sets a value in memory in a dynamic way at run-time. Uses the // type data. This is the same as makeSetValue, except that // makeSetValue is done at compile-time and generates the needed // code then, whereas this function picks the right code at // run-time. // Note that setValue and getValue only do *aligned* writes and reads! // Note that ccall uses JS types as for defining types, while setValue and // getValue need LLVM types ('i8', 'i32') - this is a lower-level operation function setValue(ptr, value, type, noSafe) { type = type || 'i8'; if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit switch(type) { case 'i1': HEAP8[(ptr)]=value; break; case 'i8': HEAP8[(ptr)]=value; break; case 'i16': HEAP16[((ptr)>>1)]=value; break; case 'i32': HEAP32[((ptr)>>2)]=value; break; case 'i64': (tempI64 = [value>>>0,(tempDouble=value,Math_abs(tempDouble) >= 1 ? (tempDouble > 0 ? Math_min(Math_floor((tempDouble)/4294967296), 4294967295)>>>0 : (~~(Math_ceil((tempDouble - +(((~~(tempDouble)))>>>0))/4294967296)))>>>0) : 0)],HEAP32[((ptr)>>2)]=tempI64[0],HEAP32[(((ptr)+(4))>>2)]=tempI64[1]); break; case 'float': HEAPF32[((ptr)>>2)]=value; break; case 'double': HEAPF64[((ptr)>>3)]=value; break; default: abort('invalid type for setValue: ' + type); } } Module['setValue'] = setValue; // Parallel to setValue. function getValue(ptr, type, noSafe) { type = type || 'i8'; if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit switch(type) { case 'i1': return HEAP8[(ptr)]; case 'i8': return HEAP8[(ptr)]; case 'i16': return HEAP16[((ptr)>>1)]; case 'i32': return HEAP32[((ptr)>>2)]; case 'i64': return HEAP32[((ptr)>>2)]; case 'float': return HEAPF32[((ptr)>>2)]; case 'double': return HEAPF64[((ptr)>>3)]; default: abort('invalid type for setValue: ' + type); } return null; } Module['getValue'] = getValue; var ALLOC_NORMAL = 0; // Tries to use _malloc() var ALLOC_STACK = 1; // Lives for the duration of the current function call var ALLOC_STATIC = 2; // Cannot be freed var ALLOC_DYNAMIC = 3; // Cannot be freed except through sbrk var ALLOC_NONE = 4; // Do not allocate Module['ALLOC_NORMAL'] = ALLOC_NORMAL; Module['ALLOC_STACK'] = ALLOC_STACK; Module['ALLOC_STATIC'] = ALLOC_STATIC; Module['ALLOC_DYNAMIC'] = ALLOC_DYNAMIC; Module['ALLOC_NONE'] = ALLOC_NONE; // allocate(): This is for internal use. You can use it yourself as well, but the interface // is a little tricky (see docs right below). The reason is that it is optimized // for multiple syntaxes to save space in generated code. So you should // normally not use allocate(), and instead allocate memory using _malloc(), // initialize it with setValue(), and so forth. // @slab: An array of data, or a number. If a number, then the size of the block to allocate, // in *bytes* (note that this is sometimes confusing: the next parameter does not // affect this!) // @types: Either an array of types, one for each byte (or 0 if no type at that position), // or a single type which is used for the entire block. This only matters if there // is initial data - if @slab is a number, then this does not matter at all and is // ignored. // @allocator: How to allocate memory, see ALLOC_* function allocate(slab, types, allocator, ptr) { var zeroinit, size; if (typeof slab === 'number') { zeroinit = true; size = slab; } else { zeroinit = false; size = slab.length; } var singleType = typeof types === 'string' ? types : null; var ret; if (allocator == ALLOC_NONE) { ret = ptr; } else { ret = [_malloc, Runtime.stackAlloc, Runtime.staticAlloc, Runtime.dynamicAlloc][allocator === undefined ? ALLOC_STATIC : allocator](Math.max(size, singleType ? 1 : types.length)); } if (zeroinit) { var ptr = ret, stop; assert((ret & 3) == 0); stop = ret + (size & ~3); for (; ptr < stop; ptr += 4) { HEAP32[((ptr)>>2)]=0; } stop = ret + size; while (ptr < stop) { HEAP8[((ptr++)|0)]=0; } return ret; } if (singleType === 'i8') { if (slab.subarray || slab.slice) { HEAPU8.set(slab, ret); } else { HEAPU8.set(new Uint8Array(slab), ret); } return ret; } var i = 0, type, typeSize, previousType; while (i < size) { var curr = slab[i]; if (typeof curr === 'function') { curr = Runtime.getFunctionIndex(curr); } type = singleType || types[i]; if (type === 0) { i++; continue; } assert(type, 'Must know what type to store in allocate!'); if (type == 'i64') type = 'i32'; // special case: we have one i32 here, and one i32 later setValue(ret+i, curr, type); // no need to look up size unless type changes, so cache it if (previousType !== type) { typeSize = Runtime.getNativeTypeSize(type); previousType = type; } i += typeSize; } return ret; } Module['allocate'] = allocate; function Pointer_stringify(ptr, /* optional */ length) { // TODO: use TextDecoder // Find the length, and check for UTF while doing so var hasUtf = false; var t; var i = 0; while (1) { assert(ptr + i < TOTAL_MEMORY); t = HEAPU8[(((ptr)+(i))|0)]; if (t >= 128) hasUtf = true; else if (t == 0 && !length) break; i++; if (length && i == length) break; } if (!length) length = i; var ret = ''; if (!hasUtf) { var MAX_CHUNK = 1024; // split up into chunks, because .apply on a huge string can overflow the stack var curr; while (length > 0) { curr = String.fromCharCode.apply(String, HEAPU8.subarray(ptr, ptr + Math.min(length, MAX_CHUNK))); ret = ret ? ret + curr : curr; ptr += MAX_CHUNK; length -= MAX_CHUNK; } return ret; } var utf8 = new Runtime.UTF8Processor(); for (i = 0; i < length; i++) { assert(ptr + i < TOTAL_MEMORY); t = HEAPU8[(((ptr)+(i))|0)]; ret += utf8.processCChar(t); } return ret; } Module['Pointer_stringify'] = Pointer_stringify; // Given a pointer 'ptr' to a null-terminated UTF16LE-encoded string in the emscripten HEAP, returns // a copy of that string as a Javascript String object. function UTF16ToString(ptr) { var i = 0; var str = ''; while (1) { var codeUnit = HEAP16[(((ptr)+(i*2))>>1)]; if (codeUnit == 0) return str; ++i; // fromCharCode constructs a character from a UTF-16 code unit, so we can pass the UTF16 string right through. str += String.fromCharCode(codeUnit); } } Module['UTF16ToString'] = UTF16ToString; // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in UTF16LE form. The copy will require at most (str.length*2+1)*2 bytes of space in the HEAP. function stringToUTF16(str, outPtr) { for(var i = 0; i < str.length; ++i) { // charCodeAt returns a UTF-16 encoded code unit, so it can be directly written to the HEAP. var codeUnit = str.charCodeAt(i); // possibly a lead surrogate HEAP16[(((outPtr)+(i*2))>>1)]=codeUnit; } // Null-terminate the pointer to the HEAP. HEAP16[(((outPtr)+(str.length*2))>>1)]=0; } Module['stringToUTF16'] = stringToUTF16; // Given a pointer 'ptr' to a null-terminated UTF32LE-encoded string in the emscripten HEAP, returns // a copy of that string as a Javascript String object. function UTF32ToString(ptr) { var i = 0; var str = ''; while (1) { var utf32 = HEAP32[(((ptr)+(i*4))>>2)]; if (utf32 == 0) return str; ++i; // Gotcha: fromCharCode constructs a character from a UTF-16 encoded code (pair), not from a Unicode code point! So encode the code point to UTF-16 for constructing. if (utf32 >= 0x10000) { var ch = utf32 - 0x10000; str += String.fromCharCode(0xD800 | (ch >> 10), 0xDC00 | (ch & 0x3FF)); } else { str += String.fromCharCode(utf32); } } } Module['UTF32ToString'] = UTF32ToString; // Copies the given Javascript String object 'str' to the emscripten HEAP at address 'outPtr', // null-terminated and encoded in UTF32LE form. The copy will require at most (str.length+1)*4 bytes of space in the HEAP, // but can use less, since str.length does not return the number of characters in the string, but the number of UTF-16 code units in the string. function stringToUTF32(str, outPtr) { var iChar = 0; for(var iCodeUnit = 0; iCodeUnit < str.length; ++iCodeUnit) { // Gotcha: charCodeAt returns a 16-bit word that is a UTF-16 encoded code unit, not a Unicode code point of the character! We must decode the string to UTF-32 to the heap. var codeUnit = str.charCodeAt(iCodeUnit); // possibly a lead surrogate if (codeUnit >= 0xD800 && codeUnit <= 0xDFFF) { var trailSurrogate = str.charCodeAt(++iCodeUnit); codeUnit = 0x10000 + ((codeUnit & 0x3FF) << 10) | (trailSurrogate & 0x3FF); } HEAP32[(((outPtr)+(iChar*4))>>2)]=codeUnit; ++iChar; } // Null-terminate the pointer to the HEAP. HEAP32[(((outPtr)+(iChar*4))>>2)]=0; } Module['stringToUTF32'] = stringToUTF32; function demangle(func) { try { // Special-case the entry point, since its name differs from other name mangling. if (func == 'Object._main' || func == '_main') { return 'main()'; } if (typeof func === 'number') func = Pointer_stringify(func); if (func[0] !== '_') return func; if (func[1] !== '_') return func; // C function if (func[2] !== 'Z') return func; switch (func[3]) { case 'n': return 'operator new()'; case 'd': return 'operator delete()'; } var i = 3; // params, etc. var basicTypes = { 'v': 'void', 'b': 'bool', 'c': 'char', 's': 'short', 'i': 'int', 'l': 'long', 'f': 'float', 'd': 'double', 'w': 'wchar_t', 'a': 'signed char', 'h': 'unsigned char', 't': 'unsigned short', 'j': 'unsigned int', 'm': 'unsigned long', 'x': 'long long', 'y': 'unsigned long long', 'z': '...' }; function dump(x) { //return; if (x) Module.print(x); Module.print(func); var pre = ''; for (var a = 0; a < i; a++) pre += ' '; Module.print (pre + '^'); } var subs = []; function parseNested() { i++; if (func[i] === 'K') i++; // ignore const var parts = []; while (func[i] !== 'E') { if (func[i] === 'S') { // substitution i++; var next = func.indexOf('_', i); var num = func.substring(i, next) || 0; parts.push(subs[num] || '?'); i = next+1; continue; } if (func[i] === 'C') { // constructor parts.push(parts[parts.length-1]); i += 2; continue; } var size = parseInt(func.substr(i)); var pre = size.toString().length; if (!size || !pre) { i--; break; } // counter i++ below us var curr = func.substr(i + pre, size); parts.push(curr); subs.push(curr); i += pre + size; } i++; // skip E return parts; } var first = true; function parse(rawList, limit, allowVoid) { // main parser limit = limit || Infinity; var ret = '', list = []; function flushList() { return '(' + list.join(', ') + ')'; } var name; if (func[i] === 'N') { // namespaced N-E name = parseNested().join('::'); limit--; if (limit === 0) return rawList ? [name] : name; } else { // not namespaced if (func[i] === 'K' || (first && func[i] === 'L')) i++; // ignore const and first 'L' var size = parseInt(func.substr(i)); if (size) { var pre = size.toString().length; name = func.substr(i + pre, size); i += pre + size; } } first = false; if (func[i] === 'I') { i++; var iList = parse(true); var iRet = parse(true, 1, true); ret += iRet[0] + ' ' + name + '<' + iList.join(', ') + '>'; } else { ret = name; } paramLoop: while (i < func.length && limit-- > 0) { //dump('paramLoop'); var c = func[i++]; if (c in basicTypes) { list.push(basicTypes[c]); } else { switch (c) { case 'P': list.push(parse(true, 1, true)[0] + '*'); break; // pointer case 'R': list.push(parse(true, 1, true)[0] + '&'); break; // reference case 'L': { // literal i++; // skip basic type var end = func.indexOf('E', i); var size = end - i; list.push(func.substr(i, size)); i += size + 2; // size + 'EE' break; } case 'A': { // array var size = parseInt(func.substr(i)); i += size.toString().length; if (func[i] !== '_') throw '?'; i++; // skip _ list.push(parse(true, 1, true)[0] + ' [' + size + ']'); break; } case 'E': break paramLoop; default: ret += '?' + c; break paramLoop; } } } if (!allowVoid && list.length === 1 && list[0] === 'void') list = []; // avoid (void) return rawList ? list : ret + flushList(); } return parse(); } catch(e) { return func; } } function demangleAll(text) { return text.replace(/__Z[\w\d_]+/g, function(x) { var y = demangle(x); return x === y ? x : (x + ' [' + y + ']') }); } function stackTrace() { var stack = new Error().stack; return stack ? demangleAll(stack) : '(no stack trace available)'; // Stack trace is not available at least on IE10 and Safari 6. } // Memory management var PAGE_SIZE = 4096; function alignMemoryPage(x) { return (x+4095)&-4096; } var HEAP; var HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64; var STATIC_BASE = 0, STATICTOP = 0, staticSealed = false; // static area var STACK_BASE = 0, STACKTOP = 0, STACK_MAX = 0; // stack area var DYNAMIC_BASE = 0, DYNAMICTOP = 0; // dynamic area handled by sbrk function enlargeMemory() { abort('Cannot enlarge memory arrays. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value ' + TOTAL_MEMORY + ', (2) compile with ALLOW_MEMORY_GROWTH which adjusts the size at runtime but prevents some optimizations, or (3) set Module.TOTAL_MEMORY before the program runs.'); } var TOTAL_STACK = Module['TOTAL_STACK'] || 5242880; var TOTAL_MEMORY = Module['TOTAL_MEMORY'] || 16777216; var FAST_MEMORY = Module['FAST_MEMORY'] || 2097152; // Initialize the runtime's memory // check for full engine support (use string 'subarray' to avoid closure compiler confusion) assert(typeof Int32Array !== 'undefined' && typeof Float64Array !== 'undefined' && !!(new Int32Array(1)['subarray']) && !!(new Int32Array(1)['set']), 'Cannot fallback to non-typed array case: Code is too specialized'); var buffer = new ArrayBuffer(TOTAL_MEMORY); HEAP8 = new Int8Array(buffer); HEAP16 = new Int16Array(buffer); HEAP32 = new Int32Array(buffer); HEAPU8 = new Uint8Array(buffer); HEAPU16 = new Uint16Array(buffer); HEAPU32 = new Uint32Array(buffer); HEAPF32 = new Float32Array(buffer); HEAPF64 = new Float64Array(buffer); // Endianness check (note: assumes compiler arch was little-endian) HEAP32[0] = 255; assert(HEAPU8[0] === 255 && HEAPU8[3] === 0, 'Typed arrays 2 must be run on a little-endian system'); Module['HEAP'] = HEAP; Module['HEAP8'] = HEAP8; Module['HEAP16'] = HEAP16; Module['HEAP32'] = HEAP32; Module['HEAPU8'] = HEAPU8; Module['HEAPU16'] = HEAPU16; Module['HEAPU32'] = HEAPU32; Module['HEAPF32'] = HEAPF32; Module['HEAPF64'] = HEAPF64; function callRuntimeCallbacks(callbacks) { while(callbacks.length > 0) { var callback = callbacks.shift(); if (typeof callback == 'function') { callback(); continue; } var func = callback.func; if (typeof func === 'number') { if (callback.arg === undefined) { Runtime.dynCall('v', func); } else { Runtime.dynCall('vi', func, [callback.arg]); } } else { func(callback.arg === undefined ? null : callback.arg); } } } var __ATPRERUN__ = []; // functions called before the runtime is initialized var __ATINIT__ = []; // functions called during startup var __ATMAIN__ = []; // functions called when main() is to be run var __ATEXIT__ = []; // functions called during shutdown var __ATPOSTRUN__ = []; // functions called after the runtime has exited var runtimeInitialized = false; function preRun() { // compatibility - merge in anything from Module['preRun'] at this time if (Module['preRun']) { if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']]; while (Module['preRun'].length) { addOnPreRun(Module['preRun'].shift()); } } callRuntimeCallbacks(__ATPRERUN__); } function ensureInitRuntime() { if (runtimeInitialized) return; runtimeInitialized = true; callRuntimeCallbacks(__ATINIT__); } function preMain() { callRuntimeCallbacks(__ATMAIN__); } function exitRuntime() { callRuntimeCallbacks(__ATEXIT__); } function postRun() { // compatibility - merge in anything from Module['postRun'] at this time if (Module['postRun']) { if (typeof Module['postRun'] == 'function') Module['postRun'] = [Module['postRun']]; while (Module['postRun'].length) { addOnPostRun(Module['postRun'].shift()); } } callRuntimeCallbacks(__ATPOSTRUN__); } function addOnPreRun(cb) { __ATPRERUN__.unshift(cb); } Module['addOnPreRun'] = Module.addOnPreRun = addOnPreRun; function addOnInit(cb) { __ATINIT__.unshift(cb); } Module['addOnInit'] = Module.addOnInit = addOnInit; function addOnPreMain(cb) { __ATMAIN__.unshift(cb); } Module['addOnPreMain'] = Module.addOnPreMain = addOnPreMain; function addOnExit(cb) { __ATEXIT__.unshift(cb); } Module['addOnExit'] = Module.addOnExit = addOnExit; function addOnPostRun(cb) { __ATPOSTRUN__.unshift(cb); } Module['addOnPostRun'] = Module.addOnPostRun = addOnPostRun; // Tools // This processes a JS string into a C-line array of numbers, 0-terminated. // For LLVM-originating strings, see parser.js:parseLLVMString function function intArrayFromString(stringy, dontAddNull, length /* optional */) { var ret = (new Runtime.UTF8Processor()).processJSString(stringy); if (length) { ret.length = length; } if (!dontAddNull) { ret.push(0); } return ret; } Module['intArrayFromString'] = intArrayFromString; function intArrayToString(array) { var ret = []; for (var i = 0; i < array.length; i++) { var chr = array[i]; if (chr > 0xFF) { assert(false, 'Character code ' + chr + ' (' + String.fromCharCode(chr) + ') at offset ' + i + ' not in 0x00-0xFF.'); chr &= 0xFF; } ret.push(String.fromCharCode(chr)); } return ret.join(''); } Module['intArrayToString'] = intArrayToString; // Write a Javascript array to somewhere in the heap function writeStringToMemory(string, buffer, dontAddNull) { var array = intArrayFromString(string, dontAddNull); var i = 0; while (i < array.length) { var chr = array[i]; HEAP8[(((buffer)+(i))|0)]=chr; i = i + 1; } } Module['writeStringToMemory'] = writeStringToMemory; function writeArrayToMemory(array, buffer) { for (var i = 0; i < array.length; i++) { HEAP8[(((buffer)+(i))|0)]=array[i]; } } Module['writeArrayToMemory'] = writeArrayToMemory; function writeAsciiToMemory(str, buffer, dontAddNull) { for (var i = 0; i < str.length; i++) { assert(str.charCodeAt(i) === str.charCodeAt(i)&0xff); HEAP8[(((buffer)+(i))|0)]=str.charCodeAt(i); } if (!dontAddNull) HEAP8[(((buffer)+(str.length))|0)]=0; } Module['writeAsciiToMemory'] = writeAsciiToMemory; function unSign(value, bits, ignore, sig) { if (value >= 0) { return value; } return bits <= 32 ? 2*Math.abs(1 << (bits-1)) + value // Need some trickery, since if bits == 32, we are right at the limit of the bits JS uses in bitshifts : Math.pow(2, bits) + value; } function reSign(value, bits, ignore, sig) { if (value <= 0) { return value; } var half = bits <= 32 ? Math.abs(1 << (bits-1)) // abs is needed if bits == 32 : Math.pow(2, bits-1); if (value >= half && (bits <= 32 || value > half)) { // for huge values, we can hit the precision limit and always get true here. so don't do that // but, in general there is no perfect solution here. With 64-bit ints, we get rounding and errors // TODO: In i64 mode 1, resign the two parts separately and safely value = -2*half + value; // Cannot bitshift half, as it may be at the limit of the bits JS uses in bitshifts } return value; } // check for imul support, and also for correctness ( https://bugs.webkit.org/show_bug.cgi?id=126345 ) if (!Math['imul'] || Math['imul'](0xffffffff, 5) !== -5) Math['imul'] = function imul(a, b) { var ah = a >>> 16; var al = a & 0xffff; var bh = b >>> 16; var bl = b & 0xffff; return (al*bl + ((ah*bl + al*bh) << 16))|0; }; Math.imul = Math['imul']; var Math_abs = Math.abs; var Math_cos = Math.cos; var Math_sin = Math.sin; var Math_tan = Math.tan; var Math_acos = Math.acos; var Math_asin = Math.asin; var Math_atan = Math.atan; var Math_atan2 = Math.atan2; var Math_exp = Math.exp; var Math_log = Math.log; var Math_sqrt = Math.sqrt; var Math_ceil = Math.ceil; var Math_floor = Math.floor; var Math_pow = Math.pow; var Math_imul = Math.imul; var Math_fround = Math.fround; var Math_min = Math.min; // A counter of dependencies for calling run(). If we need to // do asynchronous work before running, increment this and // decrement it. Incrementing must happen in a place like // PRE_RUN_ADDITIONS (used by emcc to add file preloading). // Note that you can add dependencies in preRun, even though // it happens right before run - run will be postponed until // the dependencies are met. var runDependencies = 0; var runDependencyWatcher = null; var dependenciesFulfilled = null; // overridden to take different actions when all run dependencies are fulfilled var runDependencyTracking = {}; function addRunDependency(id) { runDependencies++; if (Module['monitorRunDependencies']) { Module['monitorRunDependencies'](runDependencies); } if (id) { assert(!runDependencyTracking[id]); runDependencyTracking[id] = 1; if (runDependencyWatcher === null && typeof setInterval !== 'undefined') { // Check for missing dependencies every few seconds runDependencyWatcher = setInterval(function() { var shown = false; for (var dep in runDependencyTracking) { if (!shown) { shown = true; Module.printErr('still waiting on run dependencies:'); } Module.printErr('dependency: ' + dep); } if (shown) { Module.printErr('(end of list)'); } }, 10000); } } else { Module.printErr('warning: run dependency added without ID'); } } Module['addRunDependency'] = addRunDependency; function removeRunDependency(id) { runDependencies--; if (Module['monitorRunDependencies']) { Module['monitorRunDependencies'](runDependencies); } if (id) { assert(runDependencyTracking[id]); delete runDependencyTracking[id]; } else { Module.printErr('warning: run dependency removed without ID'); } if (runDependencies == 0) { if (runDependencyWatcher !== null) { clearInterval(runDependencyWatcher); runDependencyWatcher = null; } if (dependenciesFulfilled) { var callback = dependenciesFulfilled; dependenciesFulfilled = null; callback(); // can add another dependenciesFulfilled } } } Module['removeRunDependency'] = removeRunDependency; Module["preloadedImages"] = {}; // maps url to image data Module["preloadedAudios"] = {}; // maps url to audio data var memoryInitializer = null; // === Body === STATIC_BASE = 8; STATICTOP = STATIC_BASE + 504; /* global initializers */ __ATINIT__.push({ func: function() { runPostSets() } }); /* memory initializer */ allocate([255,255,255,0,0,0,0,0], "i8", ALLOC_NONE, Runtime.GLOBAL_BASE); function runPostSets() { } var tempDoublePtr = Runtime.alignMemory(allocate(12, "i8", ALLOC_STATIC), 8); assert(tempDoublePtr % 8 == 0); function copyTempFloat(ptr) { // functions, because inlining this code increases code size too much HEAP8[tempDoublePtr] = HEAP8[ptr]; HEAP8[tempDoublePtr+1] = HEAP8[ptr+1]; HEAP8[tempDoublePtr+2] = HEAP8[ptr+2]; HEAP8[tempDoublePtr+3] = HEAP8[ptr+3]; } function copyTempDouble(ptr) { HEAP8[tempDoublePtr] = HEAP8[ptr]; HEAP8[tempDoublePtr+1] = HEAP8[ptr+1]; HEAP8[tempDoublePtr+2] = HEAP8[ptr+2]; HEAP8[tempDoublePtr+3] = HEAP8[ptr+3]; HEAP8[tempDoublePtr+4] = HEAP8[ptr+4]; HEAP8[tempDoublePtr+5] = HEAP8[ptr+5]; HEAP8[tempDoublePtr+6] = HEAP8[ptr+6]; HEAP8[tempDoublePtr+7] = HEAP8[ptr+7]; } function _memset(ptr, value, num) { ptr = ptr|0; value = value|0; num = num|0; var stop = 0, value4 = 0, stop4 = 0, unaligned = 0; stop = (ptr + num)|0; if ((num|0) >= 20) { // This is unaligned, but quite large, so work hard to get to aligned settings value = value & 0xff; unaligned = ptr & 3; value4 = value | (value << 8) | (value << 16) | (value << 24); stop4 = stop & ~3; if (unaligned) { unaligned = (ptr + 4 - unaligned)|0; while ((ptr|0) < (unaligned|0)) { // no need to check for stop, since we have large num HEAP8[(ptr)]=value; ptr = (ptr+1)|0; } } while ((ptr|0) < (stop4|0)) { HEAP32[((ptr)>>2)]=value4; ptr = (ptr+4)|0; } } while ((ptr|0) < (stop|0)) { HEAP8[(ptr)]=value; ptr = (ptr+1)|0; } return (ptr-num)|0; }var _llvm_memset_p0i8_i32=_memset; function _memcpy(dest, src, num) { dest = dest|0; src = src|0; num = num|0; var ret = 0; ret = dest|0; if ((dest&3) == (src&3)) { while (dest & 3) { if ((num|0) == 0) return ret|0; HEAP8[(dest)]=HEAP8[(src)]; dest = (dest+1)|0; src = (src+1)|0; num = (num-1)|0; } while ((num|0) >= 4) { HEAP32[((dest)>>2)]=HEAP32[((src)>>2)]; dest = (dest+4)|0; src = (src+4)|0; num = (num-4)|0; } } while ((num|0) > 0) { HEAP8[(dest)]=HEAP8[(src)]; dest = (dest+1)|0; src = (src+1)|0; num = (num-1)|0; } return ret|0; }var _llvm_memcpy_p0i8_p0i8_i32=_memcpy; function _abort() { Module['abort'](); } var ___errno_state=0;function ___setErrNo(value) { // For convenient setting and returning of errno. HEAP32[((___errno_state)>>2)]=value; return value; }function ___errno_location() { return ___errno_state; } function _sbrk(bytes) { //