UNPKG

mermaid

Version:

Markdown-ish syntax for generating flowcharts, mindmaps, sequence diagrams, class diagrams, gantt charts, git graphs and more.

4 lines 137 kB
{ "version": 3, "sources": ["../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/util.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/add-border-segments.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/coordinate-system.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/data/list.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/greedy-fas.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/acyclic.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/normalize.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/rank/util.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/rank/feasible-tree.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/graphlib/alg/dijkstra.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/graphlib/alg/floyd-warshall.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/graphlib/alg/topsort.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/graphlib/alg/dfs.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/graphlib/alg/postorder.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/graphlib/alg/preorder.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/rank/network-simplex.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/rank/index.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/nesting-graph.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/order/add-subgraph-constraints.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/order/build-layer-graph.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/order/cross-count.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/order/init-order.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/order/barycenter.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/order/resolve-conflicts.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/order/sort.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/order/sort-subgraph.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/order/index.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/parent-dummy-chains.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/position/bk.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/position/index.js", "../../../../../node_modules/.pnpm/dagre-d3-es@7.0.11/node_modules/dagre-d3-es/src/dagre/layout.js"], "sourcesContent": ["import * as _ from 'lodash-es';\nimport { Graph } from '../graphlib/index.js';\n\nexport {\n addDummyNode,\n simplify,\n asNonCompoundGraph,\n successorWeights,\n predecessorWeights,\n intersectRect,\n buildLayerMatrix,\n normalizeRanks,\n removeEmptyRanks,\n addBorderNode,\n maxRank,\n partition,\n time,\n notime,\n};\n\n/*\n * Adds a dummy node to the graph and return v.\n */\nfunction addDummyNode(g, type, attrs, name) {\n var v;\n do {\n v = _.uniqueId(name);\n } while (g.hasNode(v));\n\n attrs.dummy = type;\n g.setNode(v, attrs);\n return v;\n}\n\n/*\n * Returns a new graph with only simple edges. Handles aggregation of data\n * associated with multi-edges.\n */\nfunction simplify(g) {\n var simplified = new Graph().setGraph(g.graph());\n _.forEach(g.nodes(), function (v) {\n simplified.setNode(v, g.node(v));\n });\n _.forEach(g.edges(), function (e) {\n var simpleLabel = simplified.edge(e.v, e.w) || { weight: 0, minlen: 1 };\n var label = g.edge(e);\n simplified.setEdge(e.v, e.w, {\n weight: simpleLabel.weight + label.weight,\n minlen: Math.max(simpleLabel.minlen, label.minlen),\n });\n });\n return simplified;\n}\n\nfunction asNonCompoundGraph(g) {\n var simplified = new Graph({ multigraph: g.isMultigraph() }).setGraph(g.graph());\n _.forEach(g.nodes(), function (v) {\n if (!g.children(v).length) {\n simplified.setNode(v, g.node(v));\n }\n });\n _.forEach(g.edges(), function (e) {\n simplified.setEdge(e, g.edge(e));\n });\n return simplified;\n}\n\nfunction successorWeights(g) {\n var weightMap = _.map(g.nodes(), function (v) {\n var sucs = {};\n _.forEach(g.outEdges(v), function (e) {\n sucs[e.w] = (sucs[e.w] || 0) + g.edge(e).weight;\n });\n return sucs;\n });\n return _.zipObject(g.nodes(), weightMap);\n}\n\nfunction predecessorWeights(g) {\n var weightMap = _.map(g.nodes(), function (v) {\n var preds = {};\n _.forEach(g.inEdges(v), function (e) {\n preds[e.v] = (preds[e.v] || 0) + g.edge(e).weight;\n });\n return preds;\n });\n return _.zipObject(g.nodes(), weightMap);\n}\n\n/*\n * Finds where a line starting at point ({x, y}) would intersect a rectangle\n * ({x, y, width, height}) if it were pointing at the rectangle's center.\n */\nfunction intersectRect(rect, point) {\n var x = rect.x;\n var y = rect.y;\n\n // Rectangle intersection algorithm from:\n // http://math.stackexchange.com/questions/108113/find-edge-between-two-boxes\n var dx = point.x - x;\n var dy = point.y - y;\n var w = rect.width / 2;\n var h = rect.height / 2;\n\n if (!dx && !dy) {\n throw new Error('Not possible to find intersection inside of the rectangle');\n }\n\n var sx, sy;\n if (Math.abs(dy) * w > Math.abs(dx) * h) {\n // Intersection is top or bottom of rect.\n if (dy < 0) {\n h = -h;\n }\n sx = (h * dx) / dy;\n sy = h;\n } else {\n // Intersection is left or right of rect.\n if (dx < 0) {\n w = -w;\n }\n sx = w;\n sy = (w * dy) / dx;\n }\n\n return { x: x + sx, y: y + sy };\n}\n\n/*\n * Given a DAG with each node assigned \"rank\" and \"order\" properties, this\n * function will produce a matrix with the ids of each node.\n */\nfunction buildLayerMatrix(g) {\n var layering = _.map(_.range(maxRank(g) + 1), function () {\n return [];\n });\n _.forEach(g.nodes(), function (v) {\n var node = g.node(v);\n var rank = node.rank;\n if (!_.isUndefined(rank)) {\n layering[rank][node.order] = v;\n }\n });\n return layering;\n}\n\n/*\n * Adjusts the ranks for all nodes in the graph such that all nodes v have\n * rank(v) >= 0 and at least one node w has rank(w) = 0.\n */\nfunction normalizeRanks(g) {\n var min = _.min(\n _.map(g.nodes(), function (v) {\n return g.node(v).rank;\n }),\n );\n _.forEach(g.nodes(), function (v) {\n var node = g.node(v);\n if (_.has(node, 'rank')) {\n node.rank -= min;\n }\n });\n}\n\nfunction removeEmptyRanks(g) {\n // Ranks may not start at 0, so we need to offset them\n var offset = _.min(\n _.map(g.nodes(), function (v) {\n return g.node(v).rank;\n }),\n );\n\n var layers = [];\n _.forEach(g.nodes(), function (v) {\n var rank = g.node(v).rank - offset;\n if (!layers[rank]) {\n layers[rank] = [];\n }\n layers[rank].push(v);\n });\n\n var delta = 0;\n var nodeRankFactor = g.graph().nodeRankFactor;\n _.forEach(layers, function (vs, i) {\n if (_.isUndefined(vs) && i % nodeRankFactor !== 0) {\n --delta;\n } else if (delta) {\n _.forEach(vs, function (v) {\n g.node(v).rank += delta;\n });\n }\n });\n}\n\nfunction addBorderNode(g, prefix, rank, order) {\n var node = {\n width: 0,\n height: 0,\n };\n if (arguments.length >= 4) {\n node.rank = rank;\n node.order = order;\n }\n return addDummyNode(g, 'border', node, prefix);\n}\n\nfunction maxRank(g) {\n return _.max(\n _.map(g.nodes(), function (v) {\n var rank = g.node(v).rank;\n if (!_.isUndefined(rank)) {\n return rank;\n }\n }),\n );\n}\n\n/*\n * Partition a collection into two groups: `lhs` and `rhs`. If the supplied\n * function returns true for an entry it goes into `lhs`. Otherwise it goes\n * into `rhs.\n */\nfunction partition(collection, fn) {\n var result = { lhs: [], rhs: [] };\n _.forEach(collection, function (value) {\n if (fn(value)) {\n result.lhs.push(value);\n } else {\n result.rhs.push(value);\n }\n });\n return result;\n}\n\n/*\n * Returns a new function that wraps `fn` with a timer. The wrapper logs the\n * time it takes to execute the function.\n */\nfunction time(name, fn) {\n var start = _.now();\n try {\n return fn();\n } finally {\n console.log(name + ' time: ' + (_.now() - start) + 'ms');\n }\n}\n\nfunction notime(name, fn) {\n return fn();\n}\n", "import * as _ from 'lodash-es';\nimport * as util from './util.js';\n\nexport { addBorderSegments };\n\nfunction addBorderSegments(g) {\n function dfs(v) {\n var children = g.children(v);\n var node = g.node(v);\n if (children.length) {\n _.forEach(children, dfs);\n }\n\n if (Object.prototype.hasOwnProperty.call(node, 'minRank')) {\n node.borderLeft = [];\n node.borderRight = [];\n for (var rank = node.minRank, maxRank = node.maxRank + 1; rank < maxRank; ++rank) {\n addBorderNode(g, 'borderLeft', '_bl', v, node, rank);\n addBorderNode(g, 'borderRight', '_br', v, node, rank);\n }\n }\n }\n\n _.forEach(g.children(), dfs);\n}\n\nfunction addBorderNode(g, prop, prefix, sg, sgNode, rank) {\n var label = { width: 0, height: 0, rank: rank, borderType: prop };\n var prev = sgNode[prop][rank - 1];\n var curr = util.addDummyNode(g, 'border', label, prefix);\n sgNode[prop][rank] = curr;\n g.setParent(curr, sg);\n if (prev) {\n g.setEdge(prev, curr, { weight: 1 });\n }\n}\n", "import * as _ from 'lodash-es';\n\nexport { adjust, undo };\n\nfunction adjust(g) {\n var rankDir = g.graph().rankdir.toLowerCase();\n if (rankDir === 'lr' || rankDir === 'rl') {\n swapWidthHeight(g);\n }\n}\n\nfunction undo(g) {\n var rankDir = g.graph().rankdir.toLowerCase();\n if (rankDir === 'bt' || rankDir === 'rl') {\n reverseY(g);\n }\n\n if (rankDir === 'lr' || rankDir === 'rl') {\n swapXY(g);\n swapWidthHeight(g);\n }\n}\n\nfunction swapWidthHeight(g) {\n _.forEach(g.nodes(), function (v) {\n swapWidthHeightOne(g.node(v));\n });\n _.forEach(g.edges(), function (e) {\n swapWidthHeightOne(g.edge(e));\n });\n}\n\nfunction swapWidthHeightOne(attrs) {\n var w = attrs.width;\n attrs.width = attrs.height;\n attrs.height = w;\n}\n\nfunction reverseY(g) {\n _.forEach(g.nodes(), function (v) {\n reverseYOne(g.node(v));\n });\n\n _.forEach(g.edges(), function (e) {\n var edge = g.edge(e);\n _.forEach(edge.points, reverseYOne);\n if (Object.prototype.hasOwnProperty.call(edge, 'y')) {\n reverseYOne(edge);\n }\n });\n}\n\nfunction reverseYOne(attrs) {\n attrs.y = -attrs.y;\n}\n\nfunction swapXY(g) {\n _.forEach(g.nodes(), function (v) {\n swapXYOne(g.node(v));\n });\n\n _.forEach(g.edges(), function (e) {\n var edge = g.edge(e);\n _.forEach(edge.points, swapXYOne);\n if (Object.prototype.hasOwnProperty.call(edge, 'x')) {\n swapXYOne(edge);\n }\n });\n}\n\nfunction swapXYOne(attrs) {\n var x = attrs.x;\n attrs.x = attrs.y;\n attrs.y = x;\n}\n", "/*\n * Simple doubly linked list implementation derived from Cormen, et al.,\n * \"Introduction to Algorithms\".\n */\n\nexport { List };\n\nclass List {\n constructor() {\n var sentinel = {};\n sentinel._next = sentinel._prev = sentinel;\n this._sentinel = sentinel;\n }\n dequeue() {\n var sentinel = this._sentinel;\n var entry = sentinel._prev;\n if (entry !== sentinel) {\n unlink(entry);\n return entry;\n }\n }\n enqueue(entry) {\n var sentinel = this._sentinel;\n if (entry._prev && entry._next) {\n unlink(entry);\n }\n entry._next = sentinel._next;\n sentinel._next._prev = entry;\n sentinel._next = entry;\n entry._prev = sentinel;\n }\n toString() {\n var strs = [];\n var sentinel = this._sentinel;\n var curr = sentinel._prev;\n while (curr !== sentinel) {\n strs.push(JSON.stringify(curr, filterOutLinks));\n curr = curr._prev;\n }\n return '[' + strs.join(', ') + ']';\n }\n}\n\nfunction unlink(entry) {\n entry._prev._next = entry._next;\n entry._next._prev = entry._prev;\n delete entry._next;\n delete entry._prev;\n}\n\nfunction filterOutLinks(k, v) {\n if (k !== '_next' && k !== '_prev') {\n return v;\n }\n}\n", "import * as _ from 'lodash-es';\nimport { Graph } from '../graphlib/index.js';\nimport { List } from './data/list.js';\n\n/*\n * A greedy heuristic for finding a feedback arc set for a graph. A feedback\n * arc set is a set of edges that can be removed to make a graph acyclic.\n * The algorithm comes from: P. Eades, X. Lin, and W. F. Smyth, \"A fast and\n * effective heuristic for the feedback arc set problem.\" This implementation\n * adjusts that from the paper to allow for weighted edges.\n */\nexport { greedyFAS };\n\nvar DEFAULT_WEIGHT_FN = _.constant(1);\n\nfunction greedyFAS(g, weightFn) {\n if (g.nodeCount() <= 1) {\n return [];\n }\n var state = buildState(g, weightFn || DEFAULT_WEIGHT_FN);\n var results = doGreedyFAS(state.graph, state.buckets, state.zeroIdx);\n\n // Expand multi-edges\n return _.flatten(\n _.map(results, function (e) {\n return g.outEdges(e.v, e.w);\n }),\n );\n}\n\nfunction doGreedyFAS(g, buckets, zeroIdx) {\n var results = [];\n var sources = buckets[buckets.length - 1];\n var sinks = buckets[0];\n\n var entry;\n while (g.nodeCount()) {\n while ((entry = sinks.dequeue())) {\n removeNode(g, buckets, zeroIdx, entry);\n }\n while ((entry = sources.dequeue())) {\n removeNode(g, buckets, zeroIdx, entry);\n }\n if (g.nodeCount()) {\n for (var i = buckets.length - 2; i > 0; --i) {\n entry = buckets[i].dequeue();\n if (entry) {\n results = results.concat(removeNode(g, buckets, zeroIdx, entry, true));\n break;\n }\n }\n }\n }\n\n return results;\n}\n\nfunction removeNode(g, buckets, zeroIdx, entry, collectPredecessors) {\n var results = collectPredecessors ? [] : undefined;\n\n _.forEach(g.inEdges(entry.v), function (edge) {\n var weight = g.edge(edge);\n var uEntry = g.node(edge.v);\n\n if (collectPredecessors) {\n results.push({ v: edge.v, w: edge.w });\n }\n\n uEntry.out -= weight;\n assignBucket(buckets, zeroIdx, uEntry);\n });\n\n _.forEach(g.outEdges(entry.v), function (edge) {\n var weight = g.edge(edge);\n var w = edge.w;\n var wEntry = g.node(w);\n wEntry['in'] -= weight;\n assignBucket(buckets, zeroIdx, wEntry);\n });\n\n g.removeNode(entry.v);\n\n return results;\n}\n\nfunction buildState(g, weightFn) {\n var fasGraph = new Graph();\n var maxIn = 0;\n var maxOut = 0;\n\n _.forEach(g.nodes(), function (v) {\n fasGraph.setNode(v, { v: v, in: 0, out: 0 });\n });\n\n // Aggregate weights on nodes, but also sum the weights across multi-edges\n // into a single edge for the fasGraph.\n _.forEach(g.edges(), function (e) {\n var prevWeight = fasGraph.edge(e.v, e.w) || 0;\n var weight = weightFn(e);\n var edgeWeight = prevWeight + weight;\n fasGraph.setEdge(e.v, e.w, edgeWeight);\n maxOut = Math.max(maxOut, (fasGraph.node(e.v).out += weight));\n maxIn = Math.max(maxIn, (fasGraph.node(e.w)['in'] += weight));\n });\n\n var buckets = _.range(maxOut + maxIn + 3).map(function () {\n return new List();\n });\n var zeroIdx = maxIn + 1;\n\n _.forEach(fasGraph.nodes(), function (v) {\n assignBucket(buckets, zeroIdx, fasGraph.node(v));\n });\n\n return { graph: fasGraph, buckets: buckets, zeroIdx: zeroIdx };\n}\n\nfunction assignBucket(buckets, zeroIdx, entry) {\n if (!entry.out) {\n buckets[0].enqueue(entry);\n } else if (!entry['in']) {\n buckets[buckets.length - 1].enqueue(entry);\n } else {\n buckets[entry.out - entry['in'] + zeroIdx].enqueue(entry);\n }\n}\n", "import * as _ from 'lodash-es';\nimport { greedyFAS } from './greedy-fas.js';\n\nexport { run, undo };\n\nfunction run(g) {\n var fas = g.graph().acyclicer === 'greedy' ? greedyFAS(g, weightFn(g)) : dfsFAS(g);\n _.forEach(fas, function (e) {\n var label = g.edge(e);\n g.removeEdge(e);\n label.forwardName = e.name;\n label.reversed = true;\n g.setEdge(e.w, e.v, label, _.uniqueId('rev'));\n });\n\n function weightFn(g) {\n return function (e) {\n return g.edge(e).weight;\n };\n }\n}\n\nfunction dfsFAS(g) {\n var fas = [];\n var stack = {};\n var visited = {};\n\n function dfs(v) {\n if (Object.prototype.hasOwnProperty.call(visited, v)) {\n return;\n }\n visited[v] = true;\n stack[v] = true;\n _.forEach(g.outEdges(v), function (e) {\n if (Object.prototype.hasOwnProperty.call(stack, e.w)) {\n fas.push(e);\n } else {\n dfs(e.w);\n }\n });\n delete stack[v];\n }\n\n _.forEach(g.nodes(), dfs);\n return fas;\n}\n\nfunction undo(g) {\n _.forEach(g.edges(), function (e) {\n var label = g.edge(e);\n if (label.reversed) {\n g.removeEdge(e);\n\n var forwardName = label.forwardName;\n delete label.reversed;\n delete label.forwardName;\n g.setEdge(e.w, e.v, label, forwardName);\n }\n });\n}\n", "/**\n * TypeScript type imports:\n *\n * @import { Graph } from '../graphlib/graph.js';\n */\nimport * as _ from 'lodash-es';\nimport * as util from './util.js';\n\nexport { run, undo };\n\n/*\n * Breaks any long edges in the graph into short segments that span 1 layer\n * each. This operation is undoable with the denormalize function.\n *\n * Pre-conditions:\n *\n * 1. The input graph is a DAG.\n * 2. Each node in the graph has a \"rank\" property.\n *\n * Post-condition:\n *\n * 1. All edges in the graph have a length of 1.\n * 2. Dummy nodes are added where edges have been split into segments.\n * 3. The graph is augmented with a \"dummyChains\" attribute which contains\n * the first dummy in each chain of dummy nodes produced.\n */\nfunction run(g) {\n g.graph().dummyChains = [];\n _.forEach(g.edges(), function (edge) {\n normalizeEdge(g, edge);\n });\n}\n\n/**\n * @param {Graph} g\n */\nfunction normalizeEdge(g, e) {\n var v = e.v;\n var vRank = g.node(v).rank;\n var w = e.w;\n var wRank = g.node(w).rank;\n var name = e.name;\n var edgeLabel = g.edge(e);\n var labelRank = edgeLabel.labelRank;\n\n if (wRank === vRank + 1) return;\n\n g.removeEdge(e);\n\n /**\n * @typedef {Object} Attrs\n * @property {number} width\n * @property {number} height\n * @property {ReturnType<Graph[\"node\"]>} edgeLabel\n * @property {any} edgeObj\n * @property {ReturnType<Graph[\"node\"]>[\"rank\"]} rank\n * @property {string} [dummy]\n * @property {ReturnType<Graph[\"node\"]>[\"labelpos\"]} [labelpos]\n */\n\n /** @type {Attrs | undefined} */\n var attrs = undefined;\n var dummy, i;\n for (i = 0, ++vRank; vRank < wRank; ++i, ++vRank) {\n edgeLabel.points = [];\n attrs = {\n width: 0,\n height: 0,\n edgeLabel: edgeLabel,\n edgeObj: e,\n rank: vRank,\n };\n dummy = util.addDummyNode(g, 'edge', attrs, '_d');\n if (vRank === labelRank) {\n attrs.width = edgeLabel.width;\n attrs.height = edgeLabel.height;\n attrs.dummy = 'edge-label';\n attrs.labelpos = edgeLabel.labelpos;\n }\n g.setEdge(v, dummy, { weight: edgeLabel.weight }, name);\n if (i === 0) {\n g.graph().dummyChains.push(dummy);\n }\n v = dummy;\n }\n\n g.setEdge(v, w, { weight: edgeLabel.weight }, name);\n}\n\nfunction undo(g) {\n _.forEach(g.graph().dummyChains, function (v) {\n var node = g.node(v);\n var origLabel = node.edgeLabel;\n var w;\n g.setEdge(node.edgeObj, origLabel);\n while (node.dummy) {\n w = g.successors(v)[0];\n g.removeNode(v);\n origLabel.points.push({ x: node.x, y: node.y });\n if (node.dummy === 'edge-label') {\n origLabel.x = node.x;\n origLabel.y = node.y;\n origLabel.width = node.width;\n origLabel.height = node.height;\n }\n v = w;\n node = g.node(v);\n }\n });\n}\n", "import * as _ from 'lodash-es';\n\nexport { longestPath, slack };\n\n/*\n * Initializes ranks for the input graph using the longest path algorithm. This\n * algorithm scales well and is fast in practice, it yields rather poor\n * solutions. Nodes are pushed to the lowest layer possible, leaving the bottom\n * ranks wide and leaving edges longer than necessary. However, due to its\n * speed, this algorithm is good for getting an initial ranking that can be fed\n * into other algorithms.\n *\n * This algorithm does not normalize layers because it will be used by other\n * algorithms in most cases. If using this algorithm directly, be sure to\n * run normalize at the end.\n *\n * Pre-conditions:\n *\n * 1. Input graph is a DAG.\n * 2. Input graph node labels can be assigned properties.\n *\n * Post-conditions:\n *\n * 1. Each node will be assign an (unnormalized) \"rank\" property.\n */\nfunction longestPath(g) {\n var visited = {};\n\n function dfs(v) {\n var label = g.node(v);\n if (Object.prototype.hasOwnProperty.call(visited, v)) {\n return label.rank;\n }\n visited[v] = true;\n\n var rank = _.min(\n _.map(g.outEdges(v), function (e) {\n return dfs(e.w) - g.edge(e).minlen;\n }),\n );\n\n if (\n rank === Number.POSITIVE_INFINITY || // return value of _.map([]) for Lodash 3\n rank === undefined || // return value of _.map([]) for Lodash 4\n rank === null\n ) {\n // return value of _.map([null])\n rank = 0;\n }\n\n return (label.rank = rank);\n }\n\n _.forEach(g.sources(), dfs);\n}\n\n/*\n * Returns the amount of slack for the given edge. The slack is defined as the\n * difference between the length of the edge and its minimum length.\n */\nfunction slack(g, e) {\n return g.node(e.w).rank - g.node(e.v).rank - g.edge(e).minlen;\n}\n", "import * as _ from 'lodash-es';\nimport { Graph } from '../../graphlib/index.js';\nimport { slack } from './util.js';\n\nexport { feasibleTree };\n\n/*\n * Constructs a spanning tree with tight edges and adjusted the input node's\n * ranks to achieve this. A tight edge is one that is has a length that matches\n * its \"minlen\" attribute.\n *\n * The basic structure for this function is derived from Gansner, et al., \"A\n * Technique for Drawing Directed Graphs.\"\n *\n * Pre-conditions:\n *\n * 1. Graph must be a DAG.\n * 2. Graph must be connected.\n * 3. Graph must have at least one node.\n * 5. Graph nodes must have been previously assigned a \"rank\" property that\n * respects the \"minlen\" property of incident edges.\n * 6. Graph edges must have a \"minlen\" property.\n *\n * Post-conditions:\n *\n * - Graph nodes will have their rank adjusted to ensure that all edges are\n * tight.\n *\n * Returns a tree (undirected graph) that is constructed using only \"tight\"\n * edges.\n */\nfunction feasibleTree(g) {\n var t = new Graph({ directed: false });\n\n // Choose arbitrary node from which to start our tree\n var start = g.nodes()[0];\n var size = g.nodeCount();\n t.setNode(start, {});\n\n var edge, delta;\n while (tightTree(t, g) < size) {\n edge = findMinSlackEdge(t, g);\n delta = t.hasNode(edge.v) ? slack(g, edge) : -slack(g, edge);\n shiftRanks(t, g, delta);\n }\n\n return t;\n}\n\n/*\n * Finds a maximal tree of tight edges and returns the number of nodes in the\n * tree.\n */\nfunction tightTree(t, g) {\n function dfs(v) {\n _.forEach(g.nodeEdges(v), function (e) {\n var edgeV = e.v,\n w = v === edgeV ? e.w : edgeV;\n if (!t.hasNode(w) && !slack(g, e)) {\n t.setNode(w, {});\n t.setEdge(v, w, {});\n dfs(w);\n }\n });\n }\n\n _.forEach(t.nodes(), dfs);\n return t.nodeCount();\n}\n\n/*\n * Finds the edge with the smallest slack that is incident on tree and returns\n * it.\n */\nfunction findMinSlackEdge(t, g) {\n return _.minBy(g.edges(), function (e) {\n if (t.hasNode(e.v) !== t.hasNode(e.w)) {\n return slack(g, e);\n }\n });\n}\n\nfunction shiftRanks(t, g, delta) {\n _.forEach(t.nodes(), function (v) {\n g.node(v).rank += delta;\n });\n}\n", "import * as _ from 'lodash-es';\nimport { PriorityQueue } from '../data/priority-queue.js';\n\nexport { dijkstra };\n\nvar DEFAULT_WEIGHT_FUNC = _.constant(1);\n\nfunction dijkstra(g, source, weightFn, edgeFn) {\n return runDijkstra(\n g,\n String(source),\n weightFn || DEFAULT_WEIGHT_FUNC,\n edgeFn ||\n function (v) {\n return g.outEdges(v);\n },\n );\n}\n\nfunction runDijkstra(g, source, weightFn, edgeFn) {\n var results = {};\n var pq = new PriorityQueue();\n var v, vEntry;\n\n var updateNeighbors = function (edge) {\n var w = edge.v !== v ? edge.v : edge.w;\n var wEntry = results[w];\n var weight = weightFn(edge);\n var distance = vEntry.distance + weight;\n\n if (weight < 0) {\n throw new Error(\n 'dijkstra does not allow negative edge weights. ' +\n 'Bad edge: ' +\n edge +\n ' Weight: ' +\n weight,\n );\n }\n\n if (distance < wEntry.distance) {\n wEntry.distance = distance;\n wEntry.predecessor = v;\n pq.decrease(w, distance);\n }\n };\n\n g.nodes().forEach(function (v) {\n var distance = v === source ? 0 : Number.POSITIVE_INFINITY;\n results[v] = { distance: distance };\n pq.add(v, distance);\n });\n\n while (pq.size() > 0) {\n v = pq.removeMin();\n vEntry = results[v];\n if (vEntry.distance === Number.POSITIVE_INFINITY) {\n break;\n }\n\n edgeFn(v).forEach(updateNeighbors);\n }\n\n return results;\n}\n", "import * as _ from 'lodash-es';\n\nexport { floydWarshall };\n\nvar DEFAULT_WEIGHT_FUNC = _.constant(1);\n\nfunction floydWarshall(g, weightFn, edgeFn) {\n return runFloydWarshall(\n g,\n weightFn || DEFAULT_WEIGHT_FUNC,\n edgeFn ||\n function (v) {\n return g.outEdges(v);\n },\n );\n}\n\nfunction runFloydWarshall(g, weightFn, edgeFn) {\n var results = {};\n var nodes = g.nodes();\n\n nodes.forEach(function (v) {\n results[v] = {};\n results[v][v] = { distance: 0 };\n nodes.forEach(function (w) {\n if (v !== w) {\n results[v][w] = { distance: Number.POSITIVE_INFINITY };\n }\n });\n edgeFn(v).forEach(function (edge) {\n var w = edge.v === v ? edge.w : edge.v;\n var d = weightFn(edge);\n results[v][w] = { distance: d, predecessor: v };\n });\n });\n\n nodes.forEach(function (k) {\n var rowK = results[k];\n nodes.forEach(function (i) {\n var rowI = results[i];\n nodes.forEach(function (j) {\n var ik = rowI[k];\n var kj = rowK[j];\n var ij = rowI[j];\n var altDistance = ik.distance + kj.distance;\n if (altDistance < ij.distance) {\n ij.distance = altDistance;\n ij.predecessor = kj.predecessor;\n }\n });\n });\n });\n\n return results;\n}\n", "import * as _ from 'lodash-es';\n\nexport { topsort, CycleException };\n\ntopsort.CycleException = CycleException;\n\nfunction topsort(g) {\n var visited = {};\n var stack = {};\n var results = [];\n\n function visit(node) {\n if (Object.prototype.hasOwnProperty.call(stack, node)) {\n throw new CycleException();\n }\n\n if (!Object.prototype.hasOwnProperty.call(visited, node)) {\n stack[node] = true;\n visited[node] = true;\n _.each(g.predecessors(node), visit);\n delete stack[node];\n results.push(node);\n }\n }\n\n _.each(g.sinks(), visit);\n\n if (_.size(visited) !== g.nodeCount()) {\n throw new CycleException();\n }\n\n return results;\n}\n\nfunction CycleException() {}\nCycleException.prototype = new Error(); // must be an instance of Error to pass testing\n", "import * as _ from 'lodash-es';\n\nexport { dfs };\n\n/*\n * A helper that preforms a pre- or post-order traversal on the input graph\n * and returns the nodes in the order they were visited. If the graph is\n * undirected then this algorithm will navigate using neighbors. If the graph\n * is directed then this algorithm will navigate using successors.\n *\n * Order must be one of \"pre\" or \"post\".\n */\nfunction dfs(g, vs, order) {\n if (!_.isArray(vs)) {\n vs = [vs];\n }\n\n var navigation = (g.isDirected() ? g.successors : g.neighbors).bind(g);\n\n var acc = [];\n var visited = {};\n _.each(vs, function (v) {\n if (!g.hasNode(v)) {\n throw new Error('Graph does not have node: ' + v);\n }\n\n doDfs(g, v, order === 'post', visited, navigation, acc);\n });\n return acc;\n}\n\nfunction doDfs(g, v, postorder, visited, navigation, acc) {\n if (!Object.prototype.hasOwnProperty.call(visited, v)) {\n visited[v] = true;\n\n if (!postorder) {\n acc.push(v);\n }\n _.each(navigation(v), function (w) {\n doDfs(g, w, postorder, visited, navigation, acc);\n });\n if (postorder) {\n acc.push(v);\n }\n }\n}\n", "import { dfs } from './dfs.js';\n\nexport { postorder };\n\nfunction postorder(g, vs) {\n return dfs(g, vs, 'post');\n}\n", "import { dfs } from './dfs.js';\n\nexport { preorder };\n\nfunction preorder(g, vs) {\n return dfs(g, vs, 'pre');\n}\n", "import * as _ from 'lodash-es';\nimport * as alg from '../../graphlib/alg/index.js';\nimport { simplify } from '../util.js';\nimport { feasibleTree } from './feasible-tree.js';\nimport { longestPath, slack } from './util.js';\n\nexport { networkSimplex };\n\n// Expose some internals for testing purposes\nnetworkSimplex.initLowLimValues = initLowLimValues;\nnetworkSimplex.initCutValues = initCutValues;\nnetworkSimplex.calcCutValue = calcCutValue;\nnetworkSimplex.leaveEdge = leaveEdge;\nnetworkSimplex.enterEdge = enterEdge;\nnetworkSimplex.exchangeEdges = exchangeEdges;\n\n/*\n * The network simplex algorithm assigns ranks to each node in the input graph\n * and iteratively improves the ranking to reduce the length of edges.\n *\n * Preconditions:\n *\n * 1. The input graph must be a DAG.\n * 2. All nodes in the graph must have an object value.\n * 3. All edges in the graph must have \"minlen\" and \"weight\" attributes.\n *\n * Postconditions:\n *\n * 1. All nodes in the graph will have an assigned \"rank\" attribute that has\n * been optimized by the network simplex algorithm. Ranks start at 0.\n *\n *\n * A rough sketch of the algorithm is as follows:\n *\n * 1. Assign initial ranks to each node. We use the longest path algorithm,\n * which assigns ranks to the lowest position possible. In general this\n * leads to very wide bottom ranks and unnecessarily long edges.\n * 2. Construct a feasible tight tree. A tight tree is one such that all\n * edges in the tree have no slack (difference between length of edge\n * and minlen for the edge). This by itself greatly improves the assigned\n * rankings by shorting edges.\n * 3. Iteratively find edges that have negative cut values. Generally a\n * negative cut value indicates that the edge could be removed and a new\n * tree edge could be added to produce a more compact graph.\n *\n * Much of the algorithms here are derived from Gansner, et al., \"A Technique\n * for Drawing Directed Graphs.\" The structure of the file roughly follows the\n * structure of the overall algorithm.\n */\nfunction networkSimplex(g) {\n g = simplify(g);\n longestPath(g);\n var t = feasibleTree(g);\n initLowLimValues(t);\n initCutValues(t, g);\n\n var e, f;\n while ((e = leaveEdge(t))) {\n f = enterEdge(t, g, e);\n exchangeEdges(t, g, e, f);\n }\n}\n\n/*\n * Initializes cut values for all edges in the tree.\n */\nfunction initCutValues(t, g) {\n var vs = alg.postorder(t, t.nodes());\n vs = vs.slice(0, vs.length - 1);\n _.forEach(vs, function (v) {\n assignCutValue(t, g, v);\n });\n}\n\nfunction assignCutValue(t, g, child) {\n var childLab = t.node(child);\n var parent = childLab.parent;\n t.edge(child, parent).cutvalue = calcCutValue(t, g, child);\n}\n\n/*\n * Given the tight tree, its graph, and a child in the graph calculate and\n * return the cut value for the edge between the child and its parent.\n */\nfunction calcCutValue(t, g, child) {\n var childLab = t.node(child);\n var parent = childLab.parent;\n // True if the child is on the tail end of the edge in the directed graph\n var childIsTail = true;\n // The graph's view of the tree edge we're inspecting\n var graphEdge = g.edge(child, parent);\n // The accumulated cut value for the edge between this node and its parent\n var cutValue = 0;\n\n if (!graphEdge) {\n childIsTail = false;\n graphEdge = g.edge(parent, child);\n }\n\n cutValue = graphEdge.weight;\n\n _.forEach(g.nodeEdges(child), function (e) {\n var isOutEdge = e.v === child,\n other = isOutEdge ? e.w : e.v;\n\n if (other !== parent) {\n var pointsToHead = isOutEdge === childIsTail,\n otherWeight = g.edge(e).weight;\n\n cutValue += pointsToHead ? otherWeight : -otherWeight;\n if (isTreeEdge(t, child, other)) {\n var otherCutValue = t.edge(child, other).cutvalue;\n cutValue += pointsToHead ? -otherCutValue : otherCutValue;\n }\n }\n });\n\n return cutValue;\n}\n\nfunction initLowLimValues(tree, root) {\n if (arguments.length < 2) {\n root = tree.nodes()[0];\n }\n dfsAssignLowLim(tree, {}, 1, root);\n}\n\nfunction dfsAssignLowLim(tree, visited, nextLim, v, parent) {\n var low = nextLim;\n var label = tree.node(v);\n\n visited[v] = true;\n _.forEach(tree.neighbors(v), function (w) {\n if (!Object.prototype.hasOwnProperty.call(visited, w)) {\n nextLim = dfsAssignLowLim(tree, visited, nextLim, w, v);\n }\n });\n\n label.low = low;\n label.lim = nextLim++;\n if (parent) {\n label.parent = parent;\n } else {\n // TODO should be able to remove this when we incrementally update low lim\n delete label.parent;\n }\n\n return nextLim;\n}\n\nfunction leaveEdge(tree) {\n return _.find(tree.edges(), function (e) {\n return tree.edge(e).cutvalue < 0;\n });\n}\n\nfunction enterEdge(t, g, edge) {\n var v = edge.v;\n var w = edge.w;\n\n // For the rest of this function we assume that v is the tail and w is the\n // head, so if we don't have this edge in the graph we should flip it to\n // match the correct orientation.\n if (!g.hasEdge(v, w)) {\n v = edge.w;\n w = edge.v;\n }\n\n var vLabel = t.node(v);\n var wLabel = t.node(w);\n var tailLabel = vLabel;\n var flip = false;\n\n // If the root is in the tail of the edge then we need to flip the logic that\n // checks for the head and tail nodes in the candidates function below.\n if (vLabel.lim > wLabel.lim) {\n tailLabel = wLabel;\n flip = true;\n }\n\n var candidates = _.filter(g.edges(), function (edge) {\n return (\n flip === isDescendant(t, t.node(edge.v), tailLabel) &&\n flip !== isDescendant(t, t.node(edge.w), tailLabel)\n );\n });\n\n return _.minBy(candidates, function (edge) {\n return slack(g, edge);\n });\n}\n\nfunction exchangeEdges(t, g, e, f) {\n var v = e.v;\n var w = e.w;\n t.removeEdge(v, w);\n t.setEdge(f.v, f.w, {});\n initLowLimValues(t);\n initCutValues(t, g);\n updateRanks(t, g);\n}\n\nfunction updateRanks(t, g) {\n var root = _.find(t.nodes(), function (v) {\n return !g.node(v).parent;\n });\n var vs = alg.preorder(t, root);\n vs = vs.slice(1);\n _.forEach(vs, function (v) {\n var parent = t.node(v).parent,\n edge = g.edge(v, parent),\n flipped = false;\n\n if (!edge) {\n edge = g.edge(parent, v);\n flipped = true;\n }\n\n g.node(v).rank = g.node(parent).rank + (flipped ? edge.minlen : -edge.minlen);\n });\n}\n\n/*\n * Returns true if the edge is in the tree.\n */\nfunction isTreeEdge(tree, u, v) {\n return tree.hasEdge(u, v);\n}\n\n/*\n * Returns true if the specified node is descendant of the root node per the\n * assigned low and lim attributes in the tree.\n */\nfunction isDescendant(tree, vLabel, rootLabel) {\n return rootLabel.low <= vLabel.lim && vLabel.lim <= rootLabel.lim;\n}\n", "import { feasibleTree } from './feasible-tree.js';\nimport { networkSimplex } from './network-simplex.js';\nimport { longestPath } from './util.js';\n\nexport { rank };\n\n/*\n * Assigns a rank to each node in the input graph that respects the \"minlen\"\n * constraint specified on edges between nodes.\n *\n * This basic structure is derived from Gansner, et al., \"A Technique for\n * Drawing Directed Graphs.\"\n *\n * Pre-conditions:\n *\n * 1. Graph must be a connected DAG\n * 2. Graph nodes must be objects\n * 3. Graph edges must have \"weight\" and \"minlen\" attributes\n *\n * Post-conditions:\n *\n * 1. Graph nodes will have a \"rank\" attribute based on the results of the\n * algorithm. Ranks can start at any index (including negative), we'll\n * fix them up later.\n */\nfunction rank(g) {\n switch (g.graph().ranker) {\n case 'network-simplex':\n networkSimplexRanker(g);\n break;\n case 'tight-tree':\n tightTreeRanker(g);\n break;\n case 'longest-path':\n longestPathRanker(g);\n break;\n default:\n networkSimplexRanker(g);\n }\n}\n\n// A fast and simple ranker, but results are far from optimal.\nvar longestPathRanker = longestPath;\n\nfunction tightTreeRanker(g) {\n longestPath(g);\n feasibleTree(g);\n}\n\nfunction networkSimplexRanker(g) {\n networkSimplex(g);\n}\n", "import * as _ from 'lodash-es';\nimport * as util from './util.js';\n\nexport { run, cleanup };\n\n/*\n * A nesting graph creates dummy nodes for the tops and bottoms of subgraphs,\n * adds appropriate edges to ensure that all cluster nodes are placed between\n * these boundries, and ensures that the graph is connected.\n *\n * In addition we ensure, through the use of the minlen property, that nodes\n * and subgraph border nodes to not end up on the same rank.\n *\n * Preconditions:\n *\n * 1. Input graph is a DAG\n * 2. Nodes in the input graph has a minlen attribute\n *\n * Postconditions:\n *\n * 1. Input graph is connected.\n * 2. Dummy nodes are added for the tops and bottoms of subgraphs.\n * 3. The minlen attribute for nodes is adjusted to ensure nodes do not\n * get placed on the same rank as subgraph border nodes.\n *\n * The nesting graph idea comes from Sander, \"Layout of Compound Directed\n * Graphs.\"\n */\nfunction run(g) {\n var root = util.addDummyNode(g, 'root', {}, '_root');\n var depths = treeDepths(g);\n var height = _.max(_.values(depths)) - 1; // Note: depths is an Object not an array\n var nodeSep = 2 * height + 1;\n\n g.graph().nestingRoot = root;\n\n // Multiply minlen by nodeSep to align nodes on non-border ranks.\n _.forEach(g.edges(), function (e) {\n g.edge(e).minlen *= nodeSep;\n });\n\n // Calculate a weight that is sufficient to keep subgraphs vertically compact\n var weight = sumWeights(g) + 1;\n\n // Create border nodes and link them up\n _.forEach(g.children(), function (child) {\n dfs(g, root, nodeSep, weight, height, depths, child);\n });\n\n // Save the multiplier for node layers for later removal of empty border\n // layers.\n g.graph().nodeRankFactor = nodeSep;\n}\n\nfunction dfs(g, root, nodeSep, weight, height, depths, v) {\n var children = g.children(v);\n if (!children.length) {\n if (v !== root) {\n g.setEdge(root, v, { weight: 0, minlen: nodeSep });\n }\n return;\n }\n\n var top = util.addBorderNode(g, '_bt');\n var bottom = util.addBorderNode(g, '_bb');\n var label = g.node(v);\n\n g.setParent(top, v);\n label.borderTop = top;\n g.setParent(bottom, v);\n label.borderBottom = bottom;\n\n _.forEach(children, function (child) {\n dfs(g, root, nodeSep, weight, height, depths, child);\n\n var childNode = g.node(child);\n var childTop = childNode.borderTop ? childNode.borderTop : child;\n var childBottom = childNode.borderBottom ? childNode.borderBottom : child;\n var thisWeight = childNode.borderTop ? weight : 2 * weight;\n var minlen = childTop !== childBottom ? 1 : height - depths[v] + 1;\n\n g.setEdge(top, childTop, {\n weight: thisWeight,\n minlen: minlen,\n nestingEdge: true,\n });\n\n g.setEdge(childBottom, bottom, {\n weight: thisWeight,\n minlen: minlen,\n nestingEdge: true,\n });\n });\n\n if (!g.parent(v)) {\n g.setEdge(root, top, { weight: 0, minlen: height + depths[v] });\n }\n}\n\nfunction treeDepths(g) {\n var depths = {};\n function dfs(v, depth) {\n var children = g.children(v);\n if (children && children.length) {\n _.forEach(children, function (child) {\n dfs(child, depth + 1);\n });\n }\n depths[v] = depth;\n }\n _.forEach(g.children(), function (v) {\n dfs(v, 1);\n });\n return depths;\n}\n\nfunction sumWeights(g) {\n return _.reduce(\n g.edges(),\n function (acc, e) {\n return acc + g.edge(e).weight;\n },\n 0,\n );\n}\n\nfunction cleanup(g) {\n var graphLabel = g.graph();\n g.removeNode(graphLabel.nestingRoot);\n delete graphLabel.nestingRoot;\n _.forEach(g.edges(), function (e) {\n var edge = g.edge(e);\n if (edge.nestingEdge) {\n g.removeEdge(e);\n }\n });\n}\n", "import * as _ from 'lodash-es';\n\nexport { addSubgraphConstraints };\n\nfunction addSubgraphConstraints(g, cg, vs) {\n var prev = {},\n rootPrev;\n\n _.forEach(vs, function (v) {\n var child = g.parent(v),\n parent,\n prevChild;\n while (child) {\n parent = g.parent(child);\n if (parent) {\n prevChild = prev[parent];\n prev[parent] = child;\n } else {\n prevChild = rootPrev;\n rootPrev = child;\n }\n if (prevChild && prevChild !== child) {\n cg.setEdge(prevChild, child);\n return;\n }\n child = parent;\n }\n });\n\n /*\n function dfs(v) {\n var children = v ? g.children(v) : g.children();\n if (children.length) {\n var min = Number.POSITIVE_INFINITY,\n subgraphs = [];\n _.each(children, function(child) {\n var childMin = dfs(child);\n if (g.children(child).length) {\n subgraphs.push({ v: child, order: childMin });\n }\n min = Math.min(min, childMin);\n });\n _.reduce(_.sortBy(subgraphs, \"order\"), function(prev, curr) {\n cg.setEdge(prev.v, curr.v);\n return curr;\n });\n return min;\n }\n return g.node(v).order;\n }\n dfs(undefined);\n */\n}\n", "import * as _ from 'lodash-es';\nimport { Graph } from '../../graphlib/index.js';\n\nexport { buildLayerGraph };\n\n/*\n * Constructs a graph that can be used to sort a layer of nodes. The graph will\n * contain all base and subgraph nodes from the request layer in their original\n * hierarchy and any edges that are incident on these nodes and are of the type\n * requested by the \"relationship\" parameter.\n *\n * Nodes from the requested rank that do not have parents are assigned a root\n * node in the output graph, which is set in the root graph attribute. This\n * makes it easy to walk the hierarchy of movable nodes during ordering.\n *\n * Pre-conditions:\n *\n * 1. Input graph is a DAG\n * 2. Base nodes in the input graph have a rank attribute\n * 3. Subgraph nodes in the input graph has minRank and maxRank attributes\n * 4. Edges have an assigned weight\n *\n * Post-conditions:\n *\n * 1. Output graph has all nodes in the movable rank with preserved\n * hierarchy.\n * 2. Root nodes in the movable layer are made children of the node\n * indicated by the root attribute of the graph.\n * 3. Non-movable nodes incident on movable nodes, selected by the\n * relationship parameter, are included in the graph (without hierarchy).\n * 4. Edges incident on movable nodes, selected by the relationship\n * parameter, are added to the output graph.\n * 5. The weights for copied edges are aggregated as need, since the output\n * graph is not a multi-graph.\n */\nfunction buildLayerGraph(g, rank, relationship) {\n var root = createRootNode(g),\n result = new Graph({ compound: true })\n .setGraph({ root: root })\n .setDefaultNodeLabel(function (v) {\n return g.node(v);\n });\n\n _.forEach(g.nodes(), function (v) {\n var node = g.node(v),\n parent = g.parent(v);\n\n if (node.rank === rank || (node.minRank <= rank && rank <= node.maxRank)) {\n result.setNode(v);\n result.setParent(v, parent || root);\n\n // This assumes we have only short edges!\n _.forEach(g[relationship](v), function (e) {\n var u = e.v === v ? e.w : e.v,\n edge = result.edge(u, v),\n weight = !_.isUndefined(edge) ? edge.weight : 0;\n result.setEdge(u, v, { weight: g.edge(e).weight + weight });\n });\n\n if (Object.prototype.hasOwnProperty.call(node, 'minRank')) {\n result.setNode(v, {\n borderLeft: node.borderLeft[rank],\n borderRight: node.borderRight[rank],\n });\n }\n }\n });\n\n return result;\n}\n\nfunction createRootNode(g) {\n var v;\n while (g.hasNode((v = _.uniqueId('_root'))));\n return v;\n}\n", "import * as _ from 'lodash-es';\n\nexport { crossCount };\n\n/*\n * A function that takes a layering (an array of layers, each with an array of\n * ordererd nodes) and a graph and returns a weighted crossing count.\n *\n * Pre-conditions:\n *\n * 1. Input graph must be simple (not a multigraph), directed, and include\n * only simple edges.\n * 2. Edges in the input graph must have assigned weights.\n *\n * Post-conditions:\n *\n * 1. The graph and layering matrix are left unchanged.\n *\n * This algorithm is derived from Barth, et al., \"Bilayer Cross Counting.\"\n */\nfunction crossCount(g, layering) {\n var cc = 0;\n for (var i = 1; i < layering.length; ++i) {\n cc += twoLayerCrossCount(g, layering[i - 1], layering[i]);\n }\n return cc;\n}\n\nfunction twoLayerCrossCount(g, northLayer, southLayer) {\n // Sort all of the edges between the north and south layers by their position\n // in the north layer and then the south. Map these edges to the position of\n // their head in the south layer.\n var southPos = _.zipObject(\n southLayer,\n _.map(southLayer, function (v, i) {\n return i;\n }),\n );\n var southEntries = _.flatten(\n _.map(northLayer, function (v) {\n return _.sortBy(\n _.map(g.outEdges(v), function (e) {\n return { pos: southPos[e.w], weight: g.edge(e).weight };\n }),\n 'pos',\n );\n }),\n );\n\n // Build the accumulator tree\n var firstIndex = 1;\n while (firstIndex < southLayer.length) firstIndex <<= 1;\n var treeSize = 2 * firstIndex - 1;\n firstIndex -= 1;\n var tree = _.map(new Array(treeSize), function () {\n return 0;\n });\n\n // Calculate the weighted crossings\n var cc = 0;\n _.forEach(\n // @ts-expect-error\n southEntries.forEach(function (entry) {\n var index = entry.pos + firstIndex;\n tree[index] += entry.weight;\n var weightSum = 0;\n // @ts-expect-error\n while (index > 0) {\n // @ts-expect-error\n if (index % 2) {\n weightSum += tree[index + 1];\n }\n // @ts-expect-error\n index = (index - 1) >> 1;\n tree[index] += entry.weight;\n }\n cc += entry.weight * weightSum;\n }),\n );\n\n return cc;\n}\n", "import * as _ from 'lodash-es';\n\n/*\n * Assigns an initial order value for each node by performing a DFS search\n * starting from nodes in the first rank. Nodes are assigned an order in their\n * rank as they are first visited.\n *\n * This approach comes from Gansner, et al., \"A Technique for Drawing Directed\n * Graphs.\"\n *\n * Returns a layering matrix with an array per layer and each layer sorted by\n * the order of its nodes.\n */\nexport function initOrder(g) {\n var visited = {};\n var simpleNodes = _.filter(g.nodes(), function (v) {\n return !g.children(v).length;\n });\n var maxRank = _.max(\n _.map(simpleNodes, function (v) {\n return g.node(v).rank;\n }),\n );\n var layers = _.map(_.range(maxRank + 1), function () {\n return [];\n });\n\n function dfs(v) {\n if (_.has(visited, v)) return;\n visited[v] = true;\n var node = g.node(v);\n layers[node.rank].push(v);\n _.forEach(g.successors(v), dfs);\n }\n\n var orderedVs = _.sortBy(simpleNodes, function (v) {\n return g.node(v).rank;\n });\n _.forEach(orderedVs, dfs);\n\n return layers;\n}\n", "import * as _ from 'lodash-es';\n\nexport { barycenter };\n\nfunction barycenter(g, movable) {\n return _.map(movable, function (v) {\n var inV = g.inEdges(v);\n if (!inV.length) {\n return { v: v };\n } else {\n var result = _.reduce(\n inV,\n function (acc, e) {\n var edge