UNPKG

merkle-patricia-tree

Version:

This is an implementation of the modified merkle patricia tree as specified in Ethereum's yellow paper.

228 lines 11.4 kB
"use strict"; var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) { function adopt(value) { return value instanceof P ? value : new P(function (resolve) { resolve(value); }); } return new (P || (P = Promise))(function (resolve, reject) { function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } } function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } } function step(result) { result.done ? resolve(result.value) : adopt(result.value).then(fulfilled, rejected); } step((generator = generator.apply(thisArg, _arguments || [])).next()); }); }; var __generator = (this && this.__generator) || function (thisArg, body) { var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g; return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g; function verb(n) { return function (v) { return step([n, v]); }; } function step(op) { if (f) throw new TypeError("Generator is already executing."); while (_) try { if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t; if (y = 0, t) op = [op[0] & 2, t.value]; switch (op[0]) { case 0: case 1: t = op; break; case 4: _.label++; return { value: op[1], done: false }; case 5: _.label++; y = op[1]; op = [0]; continue; case 7: op = _.ops.pop(); _.trys.pop(); continue; default: if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; } if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; } if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; } if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; } if (t[2]) _.ops.pop(); _.trys.pop(); continue; } op = body.call(thisArg, _); } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; } if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true }; } }; var __values = (this && this.__values) || function(o) { var s = typeof Symbol === "function" && Symbol.iterator, m = s && o[s], i = 0; if (m) return m.call(o); if (o && typeof o.length === "number") return { next: function () { if (o && i >= o.length) o = void 0; return { value: o && o[i++], done: !o }; } }; throw new TypeError(s ? "Object is not iterable." : "Symbol.iterator is not defined."); }; Object.defineProperty(exports, "__esModule", { value: true }); exports.WalkController = void 0; var prioritizedTaskExecutor_1 = require("../prioritizedTaskExecutor"); var trieNode_1 = require("../trieNode"); /** * WalkController is an interface to control how the trie is being traversed. */ var WalkController = /** @class */ (function () { /** * Creates a new WalkController * @param onNode - The `FoundNodeFunction` to call if a node is found. * @param trie - The `Trie` to walk on. * @param poolSize - The size of the task queue. */ function WalkController(onNode, trie, poolSize) { this.onNode = onNode; this.taskExecutor = new prioritizedTaskExecutor_1.PrioritizedTaskExecutor(poolSize); this.trie = trie; this.resolve = function () { }; this.reject = function () { }; } /** * Async function to create and start a new walk over a trie. * @param onNode - The `FoundNodeFunction to call if a node is found. * @param trie - The trie to walk on. * @param root - The root key to walk on. * @param poolSize - Task execution pool size to prevent OOM errors. Defaults to 500. */ WalkController.newWalk = function (onNode, trie, root, poolSize) { return __awaiter(this, void 0, void 0, function () { var strategy; return __generator(this, function (_a) { switch (_a.label) { case 0: strategy = new WalkController(onNode, trie, poolSize !== null && poolSize !== void 0 ? poolSize : 500); return [4 /*yield*/, strategy.startWalk(root)]; case 1: _a.sent(); return [2 /*return*/]; } }); }); }; WalkController.prototype.startWalk = function (root) { return __awaiter(this, void 0, void 0, function () { var _this = this; return __generator(this, function (_a) { switch (_a.label) { case 0: return [4 /*yield*/, new Promise(function (resolve, reject) { return __awaiter(_this, void 0, void 0, function () { var node, error_1; return __generator(this, function (_a) { switch (_a.label) { case 0: this.resolve = resolve; this.reject = reject; _a.label = 1; case 1: _a.trys.push([1, 3, , 4]); return [4 /*yield*/, this.trie._lookupNode(root)]; case 2: node = _a.sent(); return [3 /*break*/, 4]; case 3: error_1 = _a.sent(); return [2 /*return*/, this.reject(error_1)]; case 4: this.processNode(root, node, []); return [2 /*return*/]; } }); }); })]; case 1: // eslint-disable-next-line no-async-promise-executor return [2 /*return*/, _a.sent()]; } }); }); }; /** * Run all children of a node. Priority of these nodes are the key length of the children. * @param node - Node to get all children of and call onNode on. * @param key - The current `key` which would yield the `node` when trying to get this node with a `get` operation. */ WalkController.prototype.allChildren = function (node, key) { var e_1, _a; if (key === void 0) { key = []; } if (node instanceof trieNode_1.LeafNode) { return; } var children; if (node instanceof trieNode_1.ExtensionNode) { children = [[node.key, node.value]]; } else if (node instanceof trieNode_1.BranchNode) { children = node.getChildren().map(function (b) { return [[b[0]], b[1]]; }); } if (!children) { return; } try { for (var children_1 = __values(children), children_1_1 = children_1.next(); !children_1_1.done; children_1_1 = children_1.next()) { var child = children_1_1.value; var keyExtension = child[0]; var childRef = child[1]; var childKey = key.concat(keyExtension); var priority = childKey.length; this.pushNodeToQueue(childRef, childKey, priority); } } catch (e_1_1) { e_1 = { error: e_1_1 }; } finally { try { if (children_1_1 && !children_1_1.done && (_a = children_1.return)) _a.call(children_1); } finally { if (e_1) throw e_1.error; } } }; /** * Push a node to the queue. If the queue has places left for tasks, the node is executed immediately, otherwise it is queued. * @param nodeRef - Push a node reference to the event queue. This reference is a 32-byte keccak hash of the value corresponding to the `key`. * @param key - The current key. * @param priority - Optional priority, defaults to key length */ WalkController.prototype.pushNodeToQueue = function (nodeRef, key, priority) { var _this = this; if (key === void 0) { key = []; } this.taskExecutor.executeOrQueue(priority !== null && priority !== void 0 ? priority : key.length, function (taskFinishedCallback) { return __awaiter(_this, void 0, void 0, function () { var childNode, error_2; return __generator(this, function (_a) { switch (_a.label) { case 0: _a.trys.push([0, 2, , 3]); return [4 /*yield*/, this.trie._lookupNode(nodeRef)]; case 1: childNode = _a.sent(); return [3 /*break*/, 3]; case 2: error_2 = _a.sent(); return [2 /*return*/, this.reject(error_2)]; case 3: taskFinishedCallback(); // this marks the current task as finished. If there are any tasks left in the queue, this will immediately execute the first task. this.processNode(nodeRef, childNode, key); return [2 /*return*/]; } }); }); }); }; /** * Push a branch of a certain BranchNode to the event queue. * @param node - The node to select a branch on. Should be a BranchNode. * @param key - The current key which leads to the corresponding node. * @param childIndex - The child index to add to the event queue. * @param priority - Optional priority of the event, defaults to the total key length. */ WalkController.prototype.onlyBranchIndex = function (node, key, childIndex, priority) { if (key === void 0) { key = []; } if (!(node instanceof trieNode_1.BranchNode)) { throw new Error('Expected branch node'); } var childRef = node.getBranch(childIndex); if (!childRef) { throw new Error('Could not get branch of childIndex'); } var childKey = key.slice(); // This copies the key to a new array. childKey.push(childIndex); var prio = priority !== null && priority !== void 0 ? priority : childKey.length; this.pushNodeToQueue(childRef, childKey, prio); }; WalkController.prototype.processNode = function (nodeRef, node, key) { if (key === void 0) { key = []; } this.onNode(nodeRef, node, key, this); if (this.taskExecutor.finished()) { // onNode should schedule new tasks. If no tasks was added and the queue is empty, then we have finished our walk. this.resolve(); } }; return WalkController; }()); exports.WalkController = WalkController; //# sourceMappingURL=walkController.js.map