UNPKG

mdx-m3-viewer

Version:

A browser WebGL model viewer. Mainly focused on models of the games Warcraft 3 and Starcraft 2.

836 lines (820 loc) 29.2 kB
/* Copyright 2017 Mozilla Foundation * * Licensed under the Apache License, Version 2.0 (the 'License'); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an 'AS IS' BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // NOTICE: This file was edited to support loading JPEG data stored in BLP files, which use a non-standard RGBA pixel format. 'use strict'; let _typeof = typeof Symbol === 'function' && typeof Symbol.iterator === 'symbol' ? function(obj) { return typeof obj; } : function(obj) { return obj && typeof Symbol === 'function' && obj.constructor === Symbol && obj !== Symbol.prototype ? 'symbol' : typeof obj; }; let JpegError = function JpegErrorClosure() { function JpegError(msg) { this.message = 'JPEG error: ' + msg; } JpegError.prototype = new Error(); JpegError.prototype.name = 'JpegError'; JpegError.constructor = JpegError; return JpegError; }(); let JpegImage = function JpegImageClosure() { let dctZigZag = new Uint8Array([0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63]); let dctCos1 = 4017; let dctSin1 = 799; let dctCos3 = 3406; let dctSin3 = 2276; let dctCos6 = 1567; let dctSin6 = 3784; let dctSqrt2 = 5793; let dctSqrt1d2 = 2896; function JpegImage() { this.decodeTransform = null; this.colorTransform = -1; } function buildHuffmanTable(codeLengths, values) { let k = 0, code = [], i, j, length = 16; while (length > 0 && !codeLengths[length - 1]) { length--; } code.push({ children: [], index: 0, }); let p = code[0], q; for (i = 0; i < length; i++) { for (j = 0; j < codeLengths[i]; j++) { p = code.pop(); p.children[p.index] = values[k]; while (p.index > 0) { p = code.pop(); } p.index++; code.push(p); while (code.length <= i) { code.push(q = { children: [], index: 0, }); p.children[p.index] = q.children; p = q; } k++; } if (i + 1 < length) { code.push(q = { children: [], index: 0, }); p.children[p.index] = q.children; p = q; } } return code[0].children; } function getBlockBufferOffset(component, row, col) { return 64 * ((component.blocksPerLine + 1) * row + col); } function decodeScan(data, offset, frame, components, resetInterval, spectralStart, spectralEnd, successivePrev, successive) { let mcusPerLine = frame.mcusPerLine; let progressive = frame.progressive; let startOffset = offset, bitsData = 0, bitsCount = 0; function readBit() { if (bitsCount > 0) { bitsCount--; return bitsData >> bitsCount & 1; } bitsData = data[offset++]; if (bitsData === 0xFF) { let nextByte = data[offset++]; if (nextByte) { throw new JpegError('unexpected marker ' + (bitsData << 8 | nextByte).toString(16)); } } bitsCount = 7; return bitsData >>> 7; } function decodeHuffman(tree) { let node = tree; while (true) { node = node[readBit()]; if (typeof node === 'number') { return node; } if ((typeof node === 'undefined' ? 'undefined' : _typeof(node)) !== 'object') { throw new JpegError('invalid huffman sequence'); } } } function receive(length) { let n = 0; while (length > 0) { n = n << 1 | readBit(); length--; } return n; } function receiveAndExtend(length) { if (length === 1) { return readBit() === 1 ? 1 : -1; } let n = receive(length); if (n >= 1 << length - 1) { return n; } return n + (-1 << length) + 1; } function decodeBaseline(component, offset) { let t = decodeHuffman(component.huffmanTableDC); let diff = t === 0 ? 0 : receiveAndExtend(t); component.blockData[offset] = component.pred += diff; let k = 1; while (k < 64) { let rs = decodeHuffman(component.huffmanTableAC); let s = rs & 15, r = rs >> 4; if (s === 0) { if (r < 15) { break; } k += 16; continue; } k += r; let z = dctZigZag[k]; component.blockData[offset + z] = receiveAndExtend(s); k++; } } function decodeDCFirst(component, offset) { let t = decodeHuffman(component.huffmanTableDC); let diff = t === 0 ? 0 : receiveAndExtend(t) << successive; component.blockData[offset] = component.pred += diff; } function decodeDCSuccessive(component, offset) { component.blockData[offset] |= readBit() << successive; } let eobrun = 0; function decodeACFirst(component, offset) { if (eobrun > 0) { eobrun--; return; } let k = spectralStart, e = spectralEnd; while (k <= e) { let rs = decodeHuffman(component.huffmanTableAC); let s = rs & 15, r = rs >> 4; if (s === 0) { if (r < 15) { eobrun = receive(r) + (1 << r) - 1; break; } k += 16; continue; } k += r; let z = dctZigZag[k]; component.blockData[offset + z] = receiveAndExtend(s) * (1 << successive); k++; } } let successiveACState = 0, successiveACNextValue; function decodeACSuccessive(component, offset) { let k = spectralStart; let e = spectralEnd; let r = 0; let s; let rs; while (k <= e) { let z = dctZigZag[k]; switch (successiveACState) { case 0: rs = decodeHuffman(component.huffmanTableAC); s = rs & 15; r = rs >> 4; if (s === 0) { if (r < 15) { eobrun = receive(r) + (1 << r); successiveACState = 4; } else { r = 16; successiveACState = 1; } } else { if (s !== 1) { throw new JpegError('invalid ACn encoding'); } successiveACNextValue = receiveAndExtend(s); successiveACState = r ? 2 : 3; } continue; case 1: case 2: if (component.blockData[offset + z]) { component.blockData[offset + z] += readBit() << successive; } else { r--; if (r === 0) { successiveACState = successiveACState === 2 ? 3 : 0; } } break; case 3: if (component.blockData[offset + z]) { component.blockData[offset + z] += readBit() << successive; } else { component.blockData[offset + z] = successiveACNextValue << successive; successiveACState = 0; } break; case 4: if (component.blockData[offset + z]) { component.blockData[offset + z] += readBit() << successive; } break; } k++; } if (successiveACState === 4) { eobrun--; if (eobrun === 0) { successiveACState = 0; } } } function decodeMcu(component, decode, mcu, row, col) { let mcuRow = mcu / mcusPerLine | 0; let mcuCol = mcu % mcusPerLine; let blockRow = mcuRow * component.v + row; let blockCol = mcuCol * component.h + col; let offset = getBlockBufferOffset(component, blockRow, blockCol); decode(component, offset); } function decodeBlock(component, decode, mcu) { let blockRow = mcu / component.blocksPerLine | 0; let blockCol = mcu % component.blocksPerLine; let offset = getBlockBufferOffset(component, blockRow, blockCol); decode(component, offset); } let componentsLength = components.length; let component, i, j, k, n; let decodeFn; if (progressive) { if (spectralStart === 0) { decodeFn = successivePrev === 0 ? decodeDCFirst : decodeDCSuccessive; } else { decodeFn = successivePrev === 0 ? decodeACFirst : decodeACSuccessive; } } else { decodeFn = decodeBaseline; } let mcu = 0, fileMarker; let mcuExpected; if (componentsLength === 1) { mcuExpected = components[0].blocksPerLine * components[0].blocksPerColumn; } else { mcuExpected = mcusPerLine * frame.mcusPerColumn; } let h, v; while (mcu < mcuExpected) { let mcuToRead = resetInterval ? Math.min(mcuExpected - mcu, resetInterval) : mcuExpected; for (i = 0; i < componentsLength; i++) { components[i].pred = 0; } eobrun = 0; if (componentsLength === 1) { component = components[0]; for (n = 0; n < mcuToRead; n++) { decodeBlock(component, decodeFn, mcu); mcu++; } } else { for (n = 0; n < mcuToRead; n++) { for (i = 0; i < componentsLength; i++) { component = components[i]; h = component.h; v = component.v; for (j = 0; j < v; j++) { for (k = 0; k < h; k++) { decodeMcu(component, decodeFn, mcu, j, k); } } } mcu++; } } bitsCount = 0; fileMarker = findNextFileMarker(data, offset); if (fileMarker && fileMarker.invalid) { // (0, _util.warn)('decodeScan - unexpected MCU data, next marker is: ' + fileMarker.invalid); offset = fileMarker.offset; } let marker = fileMarker && fileMarker.marker; if (!marker || marker <= 0xFF00) { throw new JpegError('marker was not found'); } if (marker >= 0xFFD0 && marker <= 0xFFD7) { offset += 2; } else { break; } } fileMarker = findNextFileMarker(data, offset); if (fileMarker && fileMarker.invalid) { // (0, _util.warn)('decodeScan - unexpected Scan data, next marker is: ' + fileMarker.invalid); offset = fileMarker.offset; } return offset - startOffset; } function quantizeAndInverse(component, blockBufferOffset, p) { let qt = component.quantizationTable, blockData = component.blockData; let v0, v1, v2, v3, v4, v5, v6, v7; let p0, p1, p2, p3, p4, p5, p6, p7; let t; if (!qt) { throw new JpegError('missing required Quantization Table.'); } for (let row = 0; row < 64; row += 8) { p0 = blockData[blockBufferOffset + row]; p1 = blockData[blockBufferOffset + row + 1]; p2 = blockData[blockBufferOffset + row + 2]; p3 = blockData[blockBufferOffset + row + 3]; p4 = blockData[blockBufferOffset + row + 4]; p5 = blockData[blockBufferOffset + row + 5]; p6 = blockData[blockBufferOffset + row + 6]; p7 = blockData[blockBufferOffset + row + 7]; p0 *= qt[row]; if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) === 0) { t = dctSqrt2 * p0 + 512 >> 10; p[row] = t; p[row + 1] = t; p[row + 2] = t; p[row + 3] = t; p[row + 4] = t; p[row + 5] = t; p[row + 6] = t; p[row + 7] = t; continue; } p1 *= qt[row + 1]; p2 *= qt[row + 2]; p3 *= qt[row + 3]; p4 *= qt[row + 4]; p5 *= qt[row + 5]; p6 *= qt[row + 6]; p7 *= qt[row + 7]; v0 = dctSqrt2 * p0 + 128 >> 8; v1 = dctSqrt2 * p4 + 128 >> 8; v2 = p2; v3 = p6; v4 = dctSqrt1d2 * (p1 - p7) + 128 >> 8; v7 = dctSqrt1d2 * (p1 + p7) + 128 >> 8; v5 = p3 << 4; v6 = p5 << 4; v0 = v0 + v1 + 1 >> 1; v1 = v0 - v1; t = v2 * dctSin6 + v3 * dctCos6 + 128 >> 8; v2 = v2 * dctCos6 - v3 * dctSin6 + 128 >> 8; v3 = t; v4 = v4 + v6 + 1 >> 1; v6 = v4 - v6; v7 = v7 + v5 + 1 >> 1; v5 = v7 - v5; v0 = v0 + v3 + 1 >> 1; v3 = v0 - v3; v1 = v1 + v2 + 1 >> 1; v2 = v1 - v2; t = v4 * dctSin3 + v7 * dctCos3 + 2048 >> 12; v4 = v4 * dctCos3 - v7 * dctSin3 + 2048 >> 12; v7 = t; t = v5 * dctSin1 + v6 * dctCos1 + 2048 >> 12; v5 = v5 * dctCos1 - v6 * dctSin1 + 2048 >> 12; v6 = t; p[row] = v0 + v7; p[row + 7] = v0 - v7; p[row + 1] = v1 + v6; p[row + 6] = v1 - v6; p[row + 2] = v2 + v5; p[row + 5] = v2 - v5; p[row + 3] = v3 + v4; p[row + 4] = v3 - v4; } for (let col = 0; col < 8; ++col) { p0 = p[col]; p1 = p[col + 8]; p2 = p[col + 16]; p3 = p[col + 24]; p4 = p[col + 32]; p5 = p[col + 40]; p6 = p[col + 48]; p7 = p[col + 56]; if ((p1 | p2 | p3 | p4 | p5 | p6 | p7) === 0) { t = dctSqrt2 * p0 + 8192 >> 14; t = t < -2040 ? 0 : t >= 2024 ? 255 : t + 2056 >> 4; blockData[blockBufferOffset + col] = t; blockData[blockBufferOffset + col + 8] = t; blockData[blockBufferOffset + col + 16] = t; blockData[blockBufferOffset + col + 24] = t; blockData[blockBufferOffset + col + 32] = t; blockData[blockBufferOffset + col + 40] = t; blockData[blockBufferOffset + col + 48] = t; blockData[blockBufferOffset + col + 56] = t; continue; } v0 = dctSqrt2 * p0 + 2048 >> 12; v1 = dctSqrt2 * p4 + 2048 >> 12; v2 = p2; v3 = p6; v4 = dctSqrt1d2 * (p1 - p7) + 2048 >> 12; v7 = dctSqrt1d2 * (p1 + p7) + 2048 >> 12; v5 = p3; v6 = p5; v0 = (v0 + v1 + 1 >> 1) + 4112; v1 = v0 - v1; t = v2 * dctSin6 + v3 * dctCos6 + 2048 >> 12; v2 = v2 * dctCos6 - v3 * dctSin6 + 2048 >> 12; v3 = t; v4 = v4 + v6 + 1 >> 1; v6 = v4 - v6; v7 = v7 + v5 + 1 >> 1; v5 = v7 - v5; v0 = v0 + v3 + 1 >> 1; v3 = v0 - v3; v1 = v1 + v2 + 1 >> 1; v2 = v1 - v2; t = v4 * dctSin3 + v7 * dctCos3 + 2048 >> 12; v4 = v4 * dctCos3 - v7 * dctSin3 + 2048 >> 12; v7 = t; t = v5 * dctSin1 + v6 * dctCos1 + 2048 >> 12; v5 = v5 * dctCos1 - v6 * dctSin1 + 2048 >> 12; v6 = t; p0 = v0 + v7; p7 = v0 - v7; p1 = v1 + v6; p6 = v1 - v6; p2 = v2 + v5; p5 = v2 - v5; p3 = v3 + v4; p4 = v3 - v4; p0 = p0 < 16 ? 0 : p0 >= 4080 ? 255 : p0 >> 4; p1 = p1 < 16 ? 0 : p1 >= 4080 ? 255 : p1 >> 4; p2 = p2 < 16 ? 0 : p2 >= 4080 ? 255 : p2 >> 4; p3 = p3 < 16 ? 0 : p3 >= 4080 ? 255 : p3 >> 4; p4 = p4 < 16 ? 0 : p4 >= 4080 ? 255 : p4 >> 4; p5 = p5 < 16 ? 0 : p5 >= 4080 ? 255 : p5 >> 4; p6 = p6 < 16 ? 0 : p6 >= 4080 ? 255 : p6 >> 4; p7 = p7 < 16 ? 0 : p7 >= 4080 ? 255 : p7 >> 4; blockData[blockBufferOffset + col] = p0; blockData[blockBufferOffset + col + 8] = p1; blockData[blockBufferOffset + col + 16] = p2; blockData[blockBufferOffset + col + 24] = p3; blockData[blockBufferOffset + col + 32] = p4; blockData[blockBufferOffset + col + 40] = p5; blockData[blockBufferOffset + col + 48] = p6; blockData[blockBufferOffset + col + 56] = p7; } } function buildComponentData(frame, component) { let blocksPerLine = component.blocksPerLine; let blocksPerColumn = component.blocksPerColumn; let computationBuffer = new Int16Array(64); for (let blockRow = 0; blockRow < blocksPerColumn; blockRow++) { for (let blockCol = 0; blockCol < blocksPerLine; blockCol++) { let offset = getBlockBufferOffset(component, blockRow, blockCol); quantizeAndInverse(component, offset, computationBuffer); } } return component.blockData; } function clamp0to255(a) { return a <= 0 ? 0 : a >= 255 ? 255 : a; } function findNextFileMarker(data, currentPos, startPos) { function peekUint16(pos) { return data[pos] << 8 | data[pos + 1]; } let maxPos = data.length - 1; let newPos = startPos < currentPos ? startPos : currentPos; if (currentPos >= maxPos) { return null; } let currentMarker = peekUint16(currentPos); if (currentMarker >= 0xFFC0 && currentMarker <= 0xFFFE) { return { invalid: null, marker: currentMarker, offset: currentPos, }; } let newMarker = peekUint16(newPos); while (!(newMarker >= 0xFFC0 && newMarker <= 0xFFFE)) { if (++newPos >= maxPos) { return null; } newMarker = peekUint16(newPos); } return { invalid: currentMarker.toString(16), marker: newMarker, offset: newPos, }; } JpegImage.prototype = { parse: function parse(data) { function readUint16() { let value = data[offset] << 8 | data[offset + 1]; offset += 2; return value; } function readDataBlock() { let length = readUint16(); let endOffset = offset + length - 2; let fileMarker = findNextFileMarker(data, endOffset, offset); if (fileMarker && fileMarker.invalid) { // (0, _util.warn)('readDataBlock - incorrect length, next marker is: ' + fileMarker.invalid); endOffset = fileMarker.offset; } let array = data.subarray(offset, endOffset); offset += array.length; return array; } function prepareComponents(frame) { let mcusPerLine = Math.ceil(frame.samplesPerLine / 8 / frame.maxH); let mcusPerColumn = Math.ceil(frame.scanLines / 8 / frame.maxV); for (let i = 0; i < frame.components.length; i++) { component = frame.components[i]; let blocksPerLine = Math.ceil(Math.ceil(frame.samplesPerLine / 8) * component.h / frame.maxH); let blocksPerColumn = Math.ceil(Math.ceil(frame.scanLines / 8) * component.v / frame.maxV); let blocksPerLineForMcu = mcusPerLine * component.h; let blocksPerColumnForMcu = mcusPerColumn * component.v; let blocksBufferSize = 64 * blocksPerColumnForMcu * (blocksPerLineForMcu + 1); component.blockData = new Int16Array(blocksBufferSize); component.blocksPerLine = blocksPerLine; component.blocksPerColumn = blocksPerColumn; } frame.mcusPerLine = mcusPerLine; frame.mcusPerColumn = mcusPerColumn; } var offset = 0; let jfif = null; let adobe = null; let frame, resetInterval; let quantizationTables = []; let huffmanTablesAC = [], huffmanTablesDC = []; let fileMarker = readUint16(); if (fileMarker !== 0xFFD8) { throw new JpegError('SOI not found'); } fileMarker = readUint16(); while (fileMarker !== 0xFFD9) { var i, j, l; switch (fileMarker) { case 0xFFE0: case 0xFFE1: case 0xFFE2: case 0xFFE3: case 0xFFE4: case 0xFFE5: case 0xFFE6: case 0xFFE7: case 0xFFE8: case 0xFFE9: case 0xFFEA: case 0xFFEB: case 0xFFEC: case 0xFFED: case 0xFFEE: case 0xFFEF: case 0xFFFE: var appData = readDataBlock(); if (fileMarker === 0xFFE0) { if (appData[0] === 0x4A && appData[1] === 0x46 && appData[2] === 0x49 && appData[3] === 0x46 && appData[4] === 0) { jfif = { version: { major: appData[5], minor: appData[6], }, densityUnits: appData[7], xDensity: appData[8] << 8 | appData[9], yDensity: appData[10] << 8 | appData[11], thumbWidth: appData[12], thumbHeight: appData[13], thumbData: appData.subarray(14, 14 + 3 * appData[12] * appData[13]), }; } } if (fileMarker === 0xFFEE) { if (appData[0] === 0x41 && appData[1] === 0x64 && appData[2] === 0x6F && appData[3] === 0x62 && appData[4] === 0x65) { adobe = { version: appData[5] << 8 | appData[6], flags0: appData[7] << 8 | appData[8], flags1: appData[9] << 8 | appData[10], transformCode: appData[11], }; } } break; case 0xFFDB: var quantizationTablesLength = readUint16(); var quantizationTablesEnd = quantizationTablesLength + offset - 2; var z; while (offset < quantizationTablesEnd) { let quantizationTableSpec = data[offset++]; let tableData = new Uint16Array(64); if (quantizationTableSpec >> 4 === 0) { for (j = 0; j < 64; j++) { z = dctZigZag[j]; tableData[z] = data[offset++]; } } else if (quantizationTableSpec >> 4 === 1) { for (j = 0; j < 64; j++) { z = dctZigZag[j]; tableData[z] = readUint16(); } } else { throw new JpegError('DQT - invalid table spec'); } quantizationTables[quantizationTableSpec & 15] = tableData; } break; case 0xFFC0: case 0xFFC1: case 0xFFC2: if (frame) { throw new JpegError('Only single frame JPEGs supported'); } readUint16(); frame = {}; frame.extended = fileMarker === 0xFFC1; frame.progressive = fileMarker === 0xFFC2; frame.precision = data[offset++]; frame.scanLines = readUint16(); frame.samplesPerLine = readUint16(); frame.components = []; frame.componentIds = {}; var componentsCount = data[offset++], componentId; var maxH = 0, maxV = 0; for (i = 0; i < componentsCount; i++) { componentId = data[offset]; let h = data[offset + 1] >> 4; let v = data[offset + 1] & 15; if (maxH < h) { maxH = h; } if (maxV < v) { maxV = v; } let qId = data[offset + 2]; l = frame.components.push({ h: h, v: v, quantizationId: qId, quantizationTable: null, }); frame.componentIds[componentId] = l - 1; offset += 3; } frame.maxH = maxH; frame.maxV = maxV; prepareComponents(frame); break; case 0xFFC4: var huffmanLength = readUint16(); for (i = 2; i < huffmanLength;) { let huffmanTableSpec = data[offset++]; let codeLengths = new Uint8Array(16); let codeLengthSum = 0; for (j = 0; j < 16; j++ , offset++) { codeLengthSum += codeLengths[j] = data[offset]; } let huffmanValues = new Uint8Array(codeLengthSum); for (j = 0; j < codeLengthSum; j++ , offset++) { huffmanValues[j] = data[offset]; } i += 17 + codeLengthSum; (huffmanTableSpec >> 4 === 0 ? huffmanTablesDC : huffmanTablesAC)[huffmanTableSpec & 15] = buildHuffmanTable(codeLengths, huffmanValues); } break; case 0xFFDD: readUint16(); resetInterval = readUint16(); break; case 0xFFDA: readUint16(); var selectorsCount = data[offset++]; var components = [], component; for (i = 0; i < selectorsCount; i++) { let componentIndex = frame.componentIds[data[offset++]]; component = frame.components[componentIndex]; let tableSpec = data[offset++]; component.huffmanTableDC = huffmanTablesDC[tableSpec >> 4]; component.huffmanTableAC = huffmanTablesAC[tableSpec & 15]; components.push(component); } var spectralStart = data[offset++]; var spectralEnd = data[offset++]; var successiveApproximation = data[offset++]; var processed = decodeScan(data, offset, frame, components, resetInterval, spectralStart, spectralEnd, successiveApproximation >> 4, successiveApproximation & 15); offset += processed; break; case 0xFFFF: if (data[offset] !== 0xFF) { offset--; } break; default: if (data[offset - 3] === 0xFF && data[offset - 2] >= 0xC0 && data[offset - 2] <= 0xFE) { offset -= 3; break; } throw new JpegError('unknown marker ' + fileMarker.toString(16)); } fileMarker = readUint16(); } this.width = frame.samplesPerLine; this.height = frame.scanLines; this.jfif = jfif; this.adobe = adobe; this.components = []; for (i = 0; i < frame.components.length; i++) { component = frame.components[i]; let quantizationTable = quantizationTables[component.quantizationId]; if (quantizationTable) { component.quantizationTable = quantizationTable; } this.components.push({ output: buildComponentData(frame, component), scaleX: component.h / frame.maxH, scaleY: component.v / frame.maxV, blocksPerLine: component.blocksPerLine, blocksPerColumn: component.blocksPerColumn, }); } this.numComponents = this.components.length; }, getData: function(imageData) { let data = imageData.data; let components = this.components; let lineData = new Uint8Array((components[0].blocksPerLine << 3) * components[0].blocksPerColumn * 8); // NOTICE: This forces BGR->RGB conversion without adding any costs, since really we know this is going to be a hacky BGRA BLP file. [components[0], components[2]] = [components[2], components[0]]; for (let i = 0, numComponents = components.length; i < numComponents; i++) { let component = components[i]; let blocksPerLine = component.blocksPerLine; let blocksPerColumn = component.blocksPerColumn; let samplesPerLine = blocksPerLine << 3; var j, k, ll = 0; var lineOffset = 0; for (let blockRow = 0; blockRow < blocksPerColumn; blockRow++) { let scanLine = blockRow << 3; for (let blockCol = 0; blockCol < blocksPerLine; blockCol++) { let bufferOffset = getBlockBufferOffset(component, blockRow, blockCol); let offset2 = 0, sample = blockCol << 3; for (j = 0; j < 8; j++) { var lineOffset = (scanLine + j) * samplesPerLine; for (k = 0; k < 8; k++) { lineData[lineOffset + sample + k] = component.output[bufferOffset + offset2++]; } } } } let offset = i; for (let y = 0; y < this.height; y++) { for (let x = 0; x < this.width; x++) { data[offset] = lineData[y * samplesPerLine + x]; offset += numComponents; } } } return data; }, }; return JpegImage; }(); exports.JpegImage = JpegImage;