UNPKG

mcp-use

Version:

Opinionated MCP Framework for TypeScript (@modelcontextprotocol/sdk compatible) - Build MCP Agents and Clients + MCP Servers with support for MCP-UI.

794 lines (626 loc) • 24.3 kB
<div align="center" style="margin: 0 auto; max-width: 80%;"> <picture> <source media="(prefers-color-scheme: dark)" srcset="./static/logo_white.svg"> <source media="(prefers-color-scheme: light)" srcset="./static/logo_black.svg"> <img alt="mcp use logo" src="./static/logo_white.svg" width="80%" style="margin: 20px auto;"> </picture> </div> <h1 align="center">Unified MCP Client Library</h1> <p align="center"> <a href="https://www.npmjs.com/package/mcp-use" alt="NPM Downloads"> <img src="https://img.shields.io/npm/dw/mcp-use.svg"/></a> <a href="https://www.npmjs.com/package/mcp-use" alt="NPM Version"> <img src="https://img.shields.io/npm/v/mcp-use.svg"/></a> <a href="https://docs.mcp-use.io" alt="Documentation"> <img src="https://img.shields.io/badge/docs-mcp--use.io-blue" /></a> <a href="https://mcp-use.io" alt="Website"> <img src="https://img.shields.io/badge/website-mcp--use.io-blue" /></a> <a href="https://github.com/mcp-use/mcp-use/blob/main/LICENSE" alt="License"> <img src="https://img.shields.io/github/license/mcp-use/mcp-use-ts" /></a> <a href="https://eslint.org" alt="Code style: ESLint"> <img src="https://img.shields.io/badge/code%20style-eslint-4B32C3.svg" /></a> <a href="https://github.com/mcp-use/mcp-use/stargazers" alt="GitHub stars"> <img src="https://img.shields.io/github/stars/mcp-use/mcp-use-ts?style=social" /></a> <a href="https://discord.gg/XkNkSkMz3V" alt="Discord"> <img src="https://dcbadge.limes.pink/api/server/XkNkSkMz3V?style=flat" /></a> </p> 🌐 **mcp-use** is a complete TypeScript framework for building and using MCP (Model Context Protocol) applications. It provides both a powerful **client library** for connecting LLMs to MCP servers and a **server framework** for building your own MCP servers with UI capabilities. šŸ’” Build custom AI agents, create MCP servers with React UI widgets, and debug everything with the built-in inspector - all in TypeScript. ## šŸ“¦ mcp-use Ecosystem | Package | Description | Version | | ------------------------------------------------------------------------------------------------- | ------------------------------------------- | --------------------------------------------------------------------------------------------------------------- | | **mcp-use** | Core framework for MCP clients and servers | [![npm](https://img.shields.io/npm/v/mcp-use.svg)](https://www.npmjs.com/package/mcp-use) | | [@mcp-use/cli](https://github.com/mcp-use/mcp-use/tree/main/packages/cli) | Build tool for MCP apps with UI widgets | [![npm](https://img.shields.io/npm/v/@mcp-use/cli.svg)](https://www.npmjs.com/package/@mcp-use/cli) | | [@mcp-use/inspector](https://github.com/mcp-use/mcp-use/tree/main/packages/inspector) | Web-based MCP server inspector and debugger | [![npm](https://img.shields.io/npm/v/@mcp-use/inspector.svg)](https://www.npmjs.com/package/@mcp-use/inspector) | | [create-mcp-use-app](https://github.com/mcp-use/mcp-use/tree/main/packages/create-mcp-use-app) | Create MCP apps with one command | [![npm](https://img.shields.io/npm/v/create-mcp-use-app.svg)](https://www.npmjs.com/package/create-mcp-use-app) | --- ## ✨ Key Features | Feature | Description | | ------------------------------- | -------------------------------------------------------------------------- | | šŸ”„ **Ease of use** | Create an MCP-capable agent in just a few lines of TypeScript. | | šŸ¤– **LLM Flexibility** | Works with any LangChain.js-supported LLM that supports tool calling. | | 🌐 **HTTP Support** | Direct SSE/HTTP connection to MCP servers. | | āš™ļø **Dynamic Server Selection** | Agents select the right MCP server from a pool on the fly. | | 🧩 **Multi-Server Support** | Use multiple MCP servers in one agent. | | šŸ›”ļø **Tool Restrictions** | Restrict unsafe tools like filesystem or network. | | šŸ”§ **Custom Agents** | Build your own agents with LangChain.js adapter or implement new adapters. | | šŸ“Š **Observability** | Built-in support for Langfuse with dynamic metadata and tag handling. | --- ## šŸš€ Quick Start ### Requirements - Node.js 22.0.0 or higher - npm, yarn, or pnpm (examples use pnpm) ### Installation ```bash # Install from npm npm install mcp-use # LangChain.js and your LLM provider (e.g., OpenAI) npm install langchain @langchain/openai dotenv # Optional: Install observability packages for monitoring npm install langfuse @langfuse/langchain # For Langfuse observability ``` Create a `.env`: ```ini OPENAI_API_KEY=your_api_key ``` ### Basic Usage ```ts import { ChatOpenAI } from '@langchain/openai' import { MCPAgent, MCPClient } from 'mcp-use' import 'dotenv/config' async function main() { // 1. Configure MCP servers const config = { mcpServers: { playwright: { command: 'npx', args: ['@playwright/mcp@latest'] }, }, } const client = MCPClient.fromDict(config) // 2. Create LLM const llm = new ChatOpenAI({ modelName: 'gpt-4o' }) // 3. Instantiate agent const agent = new MCPAgent({ llm, client, maxSteps: 20 }) // 4. Run query const result = await agent.run( 'Find the best restaurant in Tokyo using Google Search' ) console.log('Result:', result) } main().catch(console.error) ``` --- ## šŸ”§ API Methods ### MCPAgent Methods The `MCPAgent` class provides several methods for executing queries with different output formats: #### `run(query: string, maxSteps?: number): Promise<string>` Executes a query and returns the final result as a string. ```ts const result = await agent.run('What tools are available?') console.log(result) ``` #### `stream(query: string, maxSteps?: number): AsyncGenerator<AgentStep, string, void>` Yields intermediate steps during execution, providing visibility into the agent's reasoning process. ```ts const stream = agent.stream('Search for restaurants in Tokyo') for await (const step of stream) { console.log(`Tool: ${step.action.tool}, Input: ${step.action.toolInput}`) console.log(`Result: ${step.observation}`) } ``` #### `streamEvents(query: string, maxSteps?: number): AsyncGenerator<StreamEvent, void, void>` Yields fine-grained LangChain StreamEvent objects, enabling token-by-token streaming and detailed event tracking. ```ts const eventStream = agent.streamEvents('What is the weather today?') for await (const event of eventStream) { // Handle different event types switch (event.event) { case 'on_chat_model_stream': // Token-by-token streaming from the LLM if (event.data?.chunk?.content) { process.stdout.write(event.data.chunk.content) } break case 'on_tool_start': console.log(`\nTool started: ${event.name}`) break case 'on_tool_end': console.log(`Tool completed: ${event.name}`) break } } ``` ### Key Differences - **`run()`**: Best for simple queries where you only need the final result - **`stream()`**: Best for debugging and understanding the agent's tool usage - **`streamEvents()`**: Best for real-time UI updates with token-level streaming ## šŸ”„ AI SDK Integration The library provides built-in utilities for integrating with [Vercel AI SDK](https://sdk.vercel.ai/), making it easy to build streaming UIs with React hooks like `useCompletion` and `useChat`. ### Installation ```bash npm install ai @langchain/anthropic ``` ### Basic Usage ```ts import { ChatAnthropic } from '@langchain/anthropic' import { LangChainAdapter } from 'ai' import { createReadableStreamFromGenerator, MCPAgent, MCPClient, streamEventsToAISDK, } from 'mcp-use' async function createApiHandler() { const config = { mcpServers: { everything: { command: 'npx', args: ['-y', '@modelcontextprotocol/server-everything'], }, }, } const client = new MCPClient(config) const llm = new ChatAnthropic({ model: 'claude-sonnet-4-20250514' }) const agent = new MCPAgent({ llm, client, maxSteps: 5 }) return async (request: { prompt: string }) => { const streamEvents = agent.streamEvents(request.prompt) const aiSDKStream = streamEventsToAISDK(streamEvents) const readableStream = createReadableStreamFromGenerator(aiSDKStream) return LangChainAdapter.toDataStreamResponse(readableStream) } } ``` ### Enhanced Usage with Tool Visibility ```ts import { streamEventsToAISDKWithTools } from 'mcp-use' async function createEnhancedApiHandler() { const config = { mcpServers: { everything: { command: 'npx', args: ['-y', '@modelcontextprotocol/server-everything'], }, }, } const client = new MCPClient(config) const llm = new ChatAnthropic({ model: 'claude-sonnet-4-20250514' }) const agent = new MCPAgent({ llm, client, maxSteps: 8 }) return async (request: { prompt: string }) => { const streamEvents = agent.streamEvents(request.prompt) // Enhanced stream includes tool usage notifications const enhancedStream = streamEventsToAISDKWithTools(streamEvents) const readableStream = createReadableStreamFromGenerator(enhancedStream) return LangChainAdapter.toDataStreamResponse(readableStream) } } ``` ### Next.js API Route Example ```ts // pages/api/chat.ts or app/api/chat/route.ts import { ChatAnthropic } from '@langchain/anthropic' import { LangChainAdapter } from 'ai' import { createReadableStreamFromGenerator, MCPAgent, MCPClient, streamEventsToAISDK, } from 'mcp-use' export async function POST(req: Request) { const { prompt } = await req.json() const config = { mcpServers: { everything: { command: 'npx', args: ['-y', '@modelcontextprotocol/server-everything'], }, }, } const client = new MCPClient(config) const llm = new ChatAnthropic({ model: 'claude-sonnet-4-20250514' }) const agent = new MCPAgent({ llm, client, maxSteps: 10 }) try { const streamEvents = agent.streamEvents(prompt) const aiSDKStream = streamEventsToAISDK(streamEvents) const readableStream = createReadableStreamFromGenerator(aiSDKStream) return LangChainAdapter.toDataStreamResponse(readableStream) } finally { await client.closeAllSessions() } } ``` ### Frontend Integration ```tsx // components/Chat.tsx import { useCompletion } from 'ai/react' export function Chat() { const { completion, input, handleInputChange, handleSubmit } = useCompletion({ api: '/api/chat', }) return ( <div> <div>{completion}</div> <form onSubmit={handleSubmit}> <input value={input} onChange={handleInputChange} placeholder="Ask me anything..." /> </form> </div> ) } ``` ### Available AI SDK Utilities - **`streamEventsToAISDK()`**: Converts streamEvents to basic text stream - **`streamEventsToAISDKWithTools()`**: Enhanced stream with tool usage notifications - **`createReadableStreamFromGenerator()`**: Converts async generator to ReadableStream --- ## šŸ“Š Observability & Monitoring mcp-use-ts provides built-in observability support through the `ObservabilityManager`, with integration for Langfuse and other observability platforms. #### To enable observability simply configure Environment Variables ```ini # .env LANGFUSE_PUBLIC_KEY=pk-lf-your-public-key LANGFUSE_SECRET_KEY=sk-lf-your-secret-key LANGFUSE_HOST=https://cloud.langfuse.com # or your self-hosted instance ``` ### Advanced Observability Features #### Dynamic Metadata and Tags ```ts // Set custom metadata for the current execution agent.setMetadata({ userId: 'user123', sessionId: 'session456', environment: 'production', }) // Set tags for better organization agent.setTags(['production', 'user-query', 'tool-discovery']) // Run query with metadata and tags const result = await agent.run('Search for restaurants in Tokyo') ``` #### Monitoring Agent Performance ```ts // Stream events for detailed monitoring const eventStream = agent.streamEvents('Complex multi-step query') for await (const event of eventStream) { // Monitor different event types switch (event.event) { case 'on_llm_start': console.log('LLM call started:', event.data) break case 'on_tool_start': console.log('Tool execution started:', event.name, event.data) break case 'on_tool_end': console.log('Tool execution completed:', event.name, event.data) break case 'on_chain_end': console.log('Agent execution completed:', event.data) break } } ``` ### Disabling Observability To disable observability, either remove langfuse env variables or ```ts const agent = new MCPAgent({ llm, client, observe: false, }) ``` --- ## šŸ“‚ Configuration File You can store servers in a JSON file: ```json { "mcpServers": { "playwright": { "command": "npx", "args": ["@playwright/mcp@latest"] } } } ``` Load it: ```ts import { MCPClient } from 'mcp-use' const client = MCPClient.fromConfigFile('./mcp-config.json') ``` --- ## šŸ“š Examples We provide a comprehensive set of examples demonstrating various use cases. All examples are located in the `examples/` directory with a dedicated README. ### Running Examples ```bash # Install dependencies npm install # Run any example npm run example:airbnb # Search accommodations with Airbnb npm run example:browser # Browser automation with Playwright npm run example:chat # Interactive chat with memory npm run example:stream # Demonstrate streaming methods (stream & streamEvents) npm run example:stream_events # Comprehensive streamEvents() examples npm run example:ai_sdk # AI SDK integration with streaming npm run example:filesystem # File system operations npm run example:http # HTTP server connection npm run example:everything # Test MCP functionalities npm run example:multi # Multiple servers in one session ``` ### Example Highlights - **Browser Automation**: Control browsers to navigate websites and extract information - **File Operations**: Read, write, and manipulate files through MCP - **Multi-Server**: Combine multiple MCP servers (Airbnb + Browser) in a single task - **Sandboxed Execution**: Run MCP servers in isolated E2B containers - **OAuth Flows**: Authenticate with services like Linear using OAuth2 - **Streaming Methods**: Demonstrate both step-by-step and token-level streaming - **AI SDK Integration**: Build streaming UIs with Vercel AI SDK and React hooks See the [examples README](./examples/README.md) for detailed documentation and prerequisites. --- ## šŸ”„ Multi-Server Example ```ts const config = { mcpServers: { airbnb: { command: 'npx', args: ['@openbnb/mcp-server-airbnb'] }, playwright: { command: 'npx', args: ['@playwright/mcp@latest'] }, }, } const client = MCPClient.fromDict(config) const agent = new MCPAgent({ llm, client, useServerManager: true }) await agent.run('Search Airbnb in Barcelona, then Google restaurants nearby') ``` --- ## šŸ”’ Tool Access Control ```ts const agent = new MCPAgent({ llm, client, disallowedTools: ['file_system', 'network'], }) ``` --- ## šŸ–„ļø MCP Server Framework Beyond being a powerful MCP client, mcp-use also provides a complete server framework for building your own MCP servers with built-in UI capabilities and automatic inspector integration. ### Quick Server Setup ```ts import { createMCPServer } from 'mcp-use/server' // Create your MCP server const server = createMCPServer('my-awesome-server', { version: '1.0.0', description: 'My MCP server with tools, resources, and prompts', }) // Define tools server.tool('search_web', { description: 'Search the web for information', parameters: z.object({ query: z.string().describe('Search query'), }), execute: async (args) => { // Your tool implementation return { results: await performSearch(args.query) } }, }) // Define resources server.resource('config', { description: 'Application configuration', uri: 'config://settings', mimeType: 'application/json', fetch: async () => { return JSON.stringify(await getConfig(), null, 2) }, }) // Define prompts server.prompt('code_review', { description: 'Review code for best practices', arguments: [{ name: 'code', description: 'Code to review', required: true }], render: async (args) => { return `Please review this code:\n\n${args.code}` }, }) // Start the server server.listen(3000) // šŸŽ‰ Inspector automatically available at http://localhost:3000/inspector // šŸš€ MCP endpoint available at http://localhost:3000/mcp ``` ### Key Server Features | Feature | Description | | -------------------------- | ---------------------------------------------------------------- | | **šŸ” Auto Inspector** | Inspector UI automatically mounts at `/inspector` for debugging | | **šŸŽØ UI Widgets** | Build custom React UI components served alongside your MCP tools | | **šŸ” OAuth Support** | Built-in OAuth flow handling for secure authentication | | **šŸ“” Multiple Transports** | HTTP/SSE and WebSocket support out of the box | | **šŸ› ļø TypeScript First** | Full TypeScript support with type inference | | **ā™»ļø Hot Reload** | Development mode with automatic reloading | | **šŸ“Š Observability** | Built-in logging and monitoring capabilities | ### MCP-UI Resources mcp-use provides a unified `uiResource()` method for registering interactive UI widgets that are compatible with MCP-UI clients. This automatically creates both a tool (for dynamic parameters) and a resource (for static access). #### Quick Start ```ts import { createMCPServer } from 'mcp-use/server' const server = createMCPServer('my-server', { version: '1.0.0' }) // Register a widget - creates both tool and resource automatically server.uiResource({ type: 'externalUrl', name: 'kanban-board', widget: 'kanban-board', title: 'Kanban Board', description: 'Interactive task management board', props: { initialTasks: { type: 'array', description: 'Initial tasks', required: false, }, theme: { type: 'string', default: 'light', }, }, size: ['900px', '600px'], }) server.listen(3000) ``` This automatically creates: - **Tool**: `kanban-board` - Accepts parameters and returns UIResource - **Resource**: `ui://widget/kanban-board` - Static access with defaults #### Three Resource Types **1. External URL (Iframe)** Serve widgets from your filesystem via iframe: ```ts server.uiResource({ type: 'externalUrl', name: 'dashboard', widget: 'dashboard', props: { userId: { type: 'string', required: true } }, }) ``` **2. Raw HTML** Direct HTML content rendering: ```ts server.uiResource({ type: 'rawHtml', name: 'welcome-card', htmlContent: ` <!DOCTYPE html> <html> <body><h1>Welcome!</h1></body> </html> `, }) ``` **3. Remote DOM** Interactive components using MCP-UI React components: ```ts server.uiResource({ type: 'remoteDom', name: 'quick-poll', script: ` const button = document.createElement('ui-button'); button.setAttribute('label', 'Vote'); root.appendChild(button); `, framework: 'react', }) ``` #### Get Started with Templates ```bash # Create a new project with UIResource examples npx create-mcp-use-app my-app # Select: "MCP Server with UIResource widgets" cd my-app npm install npm run dev ``` ### Building Custom UI Widgets mcp-use supports building custom UI widgets for your MCP tools using React: ```tsx // resources/task-manager.tsx import React, { useState } from 'react' import { useMcp } from 'mcp-use/react' export default function TaskManager() { const { callTool } = useMcp() const [tasks, setTasks] = useState<Task[]>([]) const addTask = async (title: string) => { const result = await callTool('create_task', { title }) setTasks([...tasks, result]) } return ( <div> <h1>Task Manager</h1> {/* Your UI implementation */} </div> ) } ``` Build and serve widgets using the mcp-use CLI: ```bash # Development with hot reload and auto-open inspector npx @mcp-use/cli dev # Production build npx @mcp-use/cli build # Start production server npx @mcp-use/cli start ``` ### Advanced Server Configuration ```ts const server = createMCPServer('advanced-server', { version: '1.0.0', description: 'Advanced MCP server with custom configuration', // Custom inspector path (default: /inspector) inspectorPath: '/debug', // Custom MCP endpoint (default: /mcp) mcpPath: '/api/mcp', // Enable CORS for browser access cors: { origin: ['http://localhost:3000', 'https://myapp.com'], credentials: true, }, // OAuth configuration oauth: { clientId: process.env.OAUTH_CLIENT_ID, clientSecret: process.env.OAUTH_CLIENT_SECRET, authorizationUrl: 'https://api.example.com/oauth/authorize', tokenUrl: 'https://api.example.com/oauth/token', scopes: ['read', 'write'], }, // Custom middleware middleware: [authenticationMiddleware, rateLimitingMiddleware], }) ``` ### Server Deployment Deploy your MCP server to any Node.js hosting platform: ```bash # Build for production npm run build # Start with PM2 pm2 start dist/index.js --name mcp-server # Docker deployment docker build -t my-mcp-server . docker run -p 3000:3000 my-mcp-server ``` ### Integration with Express You can also integrate MCP server into existing Express applications: ```ts import express from 'express' import { mountMCPServer } from 'mcp-use/server' const app = express() // Your existing routes app.get('/api/health', (req, res) => res.send('OK')) // Mount MCP server const mcpServer = createMCPServer('integrated-server', { /* ... */ }) mountMCPServer(app, mcpServer, { basePath: '/mcp-service', // Optional custom base path }) app.listen(3000) // Inspector at: http://localhost:3000/mcp-service/inspector // MCP endpoint: http://localhost:3000/mcp-service/mcp ``` ## šŸ‘„ Contributors <table> <tr> <td align="center" style="word-wrap: break-word; width: 150.0; height: 150.0"> <a href=https://github.com/pietrozullo> <img src=https://avatars.githubusercontent.com/u/62951181?v=4 width="100;" style="border-radius:50%;align-items:center;justify-content:center;overflow:hidden;padding-top:10px" alt=Pietro Zullo/> <br /> <sub style="font-size:14px"><b>Pietro Zullo</b></sub> </a> </td> <td align="center" style="word-wrap: break-word; width: 150.0; height: 150.0"> <a href=https://github.com/zandko> <img src=https://avatars.githubusercontent.com/u/37948383?v=4 width="100;" style="border-radius:50%;align-items:center;justify-content:center;overflow:hidden;padding-top:10px" alt=Zane/> <br /> <sub style="font-size:14px"><b>Zane</b></sub> </a> </td> <td align="center" style="word-wrap: break-word; width: 150.0; height: 150.0"> <a href=https://github.com/Pederzh> <img src=https://avatars.githubusercontent.com/u/11487621?v=4 width="100;" style="border-radius:50%;align-items:center;justify-content:center;overflow:hidden;padding-top:10px" alt=Luigi Pederzani/> <br /> <sub style="font-size:14px"><b>Luigi Pederzani</b></sub> </a> </td> </tr> </table> <!-- Contributors section will be automatically generated here --> ## šŸ“œ License MIT Ā© [Zane](https://github.com/zandko)