mcp-use
Version:
Opinionated MCP Framework for TypeScript (@modelcontextprotocol/sdk compatible) - Build MCP Agents and Clients + MCP Servers with support for MCP-UI.
794 lines (626 loc) ⢠24.3 kB
Markdown
<div align="center" style="margin: 0 auto; max-width: 80%;">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="./static/logo_white.svg">
<source media="(prefers-color-scheme: light)" srcset="./static/logo_black.svg">
<img alt="mcp use logo" src="./static/logo_white.svg" width="80%" style="margin: 20px auto;">
</picture>
</div>
<h1 align="center">Unified MCP Client Library</h1>
<p align="center">
<a href="https://www.npmjs.com/package/mcp-use" alt="NPM Downloads">
<img src="https://img.shields.io/npm/dw/mcp-use.svg"/></a>
<a href="https://www.npmjs.com/package/mcp-use" alt="NPM Version">
<img src="https://img.shields.io/npm/v/mcp-use.svg"/></a>
<a href="https://docs.mcp-use.io" alt="Documentation">
<img src="https://img.shields.io/badge/docs-mcp--use.io-blue" /></a>
<a href="https://mcp-use.io" alt="Website">
<img src="https://img.shields.io/badge/website-mcp--use.io-blue" /></a>
<a href="https://github.com/mcp-use/mcp-use/blob/main/LICENSE" alt="License">
<img src="https://img.shields.io/github/license/mcp-use/mcp-use-ts" /></a>
<a href="https://eslint.org" alt="Code style: ESLint">
<img src="https://img.shields.io/badge/code%20style-eslint-4B32C3.svg" /></a>
<a href="https://github.com/mcp-use/mcp-use/stargazers" alt="GitHub stars">
<img src="https://img.shields.io/github/stars/mcp-use/mcp-use-ts?style=social" /></a>
<a href="https://discord.gg/XkNkSkMz3V" alt="Discord">
<img src="https://dcbadge.limes.pink/api/server/XkNkSkMz3V?style=flat" /></a>
</p>
š **mcp-use** is a complete TypeScript framework for building and using MCP (Model Context Protocol) applications. It provides both a powerful **client library** for connecting LLMs to MCP servers and a **server framework** for building your own MCP servers with UI capabilities.
š” Build custom AI agents, create MCP servers with React UI widgets, and debug everything with the built-in inspector - all in TypeScript.
## š¦ mcp-use Ecosystem
| Package | Description | Version |
| ------------------------------------------------------------------------------------------------- | ------------------------------------------- | --------------------------------------------------------------------------------------------------------------- |
| **mcp-use** | Core framework for MCP clients and servers | [](https://www.npmjs.com/package/mcp-use) |
| [@mcp-use/cli](https://github.com/mcp-use/mcp-use/tree/main/packages/cli) | Build tool for MCP apps with UI widgets | [](https://www.npmjs.com/package/@mcp-use/cli) |
| [@mcp-use/inspector](https://github.com/mcp-use/mcp-use/tree/main/packages/inspector) | Web-based MCP server inspector and debugger | [](https://www.npmjs.com/package/@mcp-use/inspector) |
| [create-mcp-use-app](https://github.com/mcp-use/mcp-use/tree/main/packages/create-mcp-use-app) | Create MCP apps with one command | [](https://www.npmjs.com/package/create-mcp-use-app) |
---
## ⨠Key Features
| Feature | Description |
| ------------------------------- | -------------------------------------------------------------------------- |
| š **Ease of use** | Create an MCP-capable agent in just a few lines of TypeScript. |
| š¤ **LLM Flexibility** | Works with any LangChain.js-supported LLM that supports tool calling. |
| š **HTTP Support** | Direct SSE/HTTP connection to MCP servers. |
| āļø **Dynamic Server Selection** | Agents select the right MCP server from a pool on the fly. |
| š§© **Multi-Server Support** | Use multiple MCP servers in one agent. |
| š”ļø **Tool Restrictions** | Restrict unsafe tools like filesystem or network. |
| š§ **Custom Agents** | Build your own agents with LangChain.js adapter or implement new adapters. |
| š **Observability** | Built-in support for Langfuse with dynamic metadata and tag handling. |
---
## š Quick Start
### Requirements
- Node.js 22.0.0 or higher
- npm, yarn, or pnpm (examples use pnpm)
### Installation
```bash
# Install from npm
npm install mcp-use
# LangChain.js and your LLM provider (e.g., OpenAI)
npm install langchain @langchain/openai dotenv
# Optional: Install observability packages for monitoring
npm install langfuse @langfuse/langchain # For Langfuse observability
```
Create a `.env`:
```ini
OPENAI_API_KEY=your_api_key
```
### Basic Usage
```ts
import { ChatOpenAI } from '@langchain/openai'
import { MCPAgent, MCPClient } from 'mcp-use'
import 'dotenv/config'
async function main() {
// 1. Configure MCP servers
const config = {
mcpServers: {
playwright: { command: 'npx', args: ['@playwright/mcp@latest'] },
},
}
const client = MCPClient.fromDict(config)
// 2. Create LLM
const llm = new ChatOpenAI({ modelName: 'gpt-4o' })
// 3. Instantiate agent
const agent = new MCPAgent({ llm, client, maxSteps: 20 })
// 4. Run query
const result = await agent.run(
'Find the best restaurant in Tokyo using Google Search'
)
console.log('Result:', result)
}
main().catch(console.error)
```
---
## š§ API Methods
### MCPAgent Methods
The `MCPAgent` class provides several methods for executing queries with different output formats:
#### `run(query: string, maxSteps?: number): Promise<string>`
Executes a query and returns the final result as a string.
```ts
const result = await agent.run('What tools are available?')
console.log(result)
```
#### `stream(query: string, maxSteps?: number): AsyncGenerator<AgentStep, string, void>`
Yields intermediate steps during execution, providing visibility into the agent's reasoning process.
```ts
const stream = agent.stream('Search for restaurants in Tokyo')
for await (const step of stream) {
console.log(`Tool: ${step.action.tool}, Input: ${step.action.toolInput}`)
console.log(`Result: ${step.observation}`)
}
```
#### `streamEvents(query: string, maxSteps?: number): AsyncGenerator<StreamEvent, void, void>`
Yields fine-grained LangChain StreamEvent objects, enabling token-by-token streaming and detailed event tracking.
```ts
const eventStream = agent.streamEvents('What is the weather today?')
for await (const event of eventStream) {
// Handle different event types
switch (event.event) {
case 'on_chat_model_stream':
// Token-by-token streaming from the LLM
if (event.data?.chunk?.content) {
process.stdout.write(event.data.chunk.content)
}
break
case 'on_tool_start':
console.log(`\nTool started: ${event.name}`)
break
case 'on_tool_end':
console.log(`Tool completed: ${event.name}`)
break
}
}
```
### Key Differences
- **`run()`**: Best for simple queries where you only need the final result
- **`stream()`**: Best for debugging and understanding the agent's tool usage
- **`streamEvents()`**: Best for real-time UI updates with token-level streaming
## š AI SDK Integration
The library provides built-in utilities for integrating with [Vercel AI SDK](https://sdk.vercel.ai/), making it easy to build streaming UIs with React hooks like `useCompletion` and `useChat`.
### Installation
```bash
npm install ai @langchain/anthropic
```
### Basic Usage
```ts
import { ChatAnthropic } from '@langchain/anthropic'
import { LangChainAdapter } from 'ai'
import {
createReadableStreamFromGenerator,
MCPAgent,
MCPClient,
streamEventsToAISDK,
} from 'mcp-use'
async function createApiHandler() {
const config = {
mcpServers: {
everything: {
command: 'npx',
args: ['-y', '@modelcontextprotocol/server-everything'],
},
},
}
const client = new MCPClient(config)
const llm = new ChatAnthropic({ model: 'claude-sonnet-4-20250514' })
const agent = new MCPAgent({ llm, client, maxSteps: 5 })
return async (request: { prompt: string }) => {
const streamEvents = agent.streamEvents(request.prompt)
const aiSDKStream = streamEventsToAISDK(streamEvents)
const readableStream = createReadableStreamFromGenerator(aiSDKStream)
return LangChainAdapter.toDataStreamResponse(readableStream)
}
}
```
### Enhanced Usage with Tool Visibility
```ts
import { streamEventsToAISDKWithTools } from 'mcp-use'
async function createEnhancedApiHandler() {
const config = {
mcpServers: {
everything: {
command: 'npx',
args: ['-y', '@modelcontextprotocol/server-everything'],
},
},
}
const client = new MCPClient(config)
const llm = new ChatAnthropic({ model: 'claude-sonnet-4-20250514' })
const agent = new MCPAgent({ llm, client, maxSteps: 8 })
return async (request: { prompt: string }) => {
const streamEvents = agent.streamEvents(request.prompt)
// Enhanced stream includes tool usage notifications
const enhancedStream = streamEventsToAISDKWithTools(streamEvents)
const readableStream = createReadableStreamFromGenerator(enhancedStream)
return LangChainAdapter.toDataStreamResponse(readableStream)
}
}
```
### Next.js API Route Example
```ts
// pages/api/chat.ts or app/api/chat/route.ts
import { ChatAnthropic } from '@langchain/anthropic'
import { LangChainAdapter } from 'ai'
import {
createReadableStreamFromGenerator,
MCPAgent,
MCPClient,
streamEventsToAISDK,
} from 'mcp-use'
export async function POST(req: Request) {
const { prompt } = await req.json()
const config = {
mcpServers: {
everything: {
command: 'npx',
args: ['-y', '@modelcontextprotocol/server-everything'],
},
},
}
const client = new MCPClient(config)
const llm = new ChatAnthropic({ model: 'claude-sonnet-4-20250514' })
const agent = new MCPAgent({ llm, client, maxSteps: 10 })
try {
const streamEvents = agent.streamEvents(prompt)
const aiSDKStream = streamEventsToAISDK(streamEvents)
const readableStream = createReadableStreamFromGenerator(aiSDKStream)
return LangChainAdapter.toDataStreamResponse(readableStream)
} finally {
await client.closeAllSessions()
}
}
```
### Frontend Integration
```tsx
// components/Chat.tsx
import { useCompletion } from 'ai/react'
export function Chat() {
const { completion, input, handleInputChange, handleSubmit } = useCompletion({
api: '/api/chat',
})
return (
<div>
<div>{completion}</div>
<form onSubmit={handleSubmit}>
<input
value={input}
onChange={handleInputChange}
placeholder="Ask me anything..."
/>
</form>
</div>
)
}
```
### Available AI SDK Utilities
- **`streamEventsToAISDK()`**: Converts streamEvents to basic text stream
- **`streamEventsToAISDKWithTools()`**: Enhanced stream with tool usage notifications
- **`createReadableStreamFromGenerator()`**: Converts async generator to ReadableStream
---
## š Observability & Monitoring
mcp-use-ts provides built-in observability support through the `ObservabilityManager`, with integration for Langfuse and other observability platforms.
#### To enable observability simply configure Environment Variables
```ini
# .env
LANGFUSE_PUBLIC_KEY=pk-lf-your-public-key
LANGFUSE_SECRET_KEY=sk-lf-your-secret-key
LANGFUSE_HOST=https://cloud.langfuse.com # or your self-hosted instance
```
### Advanced Observability Features
#### Dynamic Metadata and Tags
```ts
// Set custom metadata for the current execution
agent.setMetadata({
userId: 'user123',
sessionId: 'session456',
environment: 'production',
})
// Set tags for better organization
agent.setTags(['production', 'user-query', 'tool-discovery'])
// Run query with metadata and tags
const result = await agent.run('Search for restaurants in Tokyo')
```
#### Monitoring Agent Performance
```ts
// Stream events for detailed monitoring
const eventStream = agent.streamEvents('Complex multi-step query')
for await (const event of eventStream) {
// Monitor different event types
switch (event.event) {
case 'on_llm_start':
console.log('LLM call started:', event.data)
break
case 'on_tool_start':
console.log('Tool execution started:', event.name, event.data)
break
case 'on_tool_end':
console.log('Tool execution completed:', event.name, event.data)
break
case 'on_chain_end':
console.log('Agent execution completed:', event.data)
break
}
}
```
### Disabling Observability
To disable observability, either remove langfuse env variables or
```ts
const agent = new MCPAgent({
llm,
client,
observe: false,
})
```
---
## š Configuration File
You can store servers in a JSON file:
```json
{
"mcpServers": {
"playwright": {
"command": "npx",
"args": ["@playwright/mcp@latest"]
}
}
}
```
Load it:
```ts
import { MCPClient } from 'mcp-use'
const client = MCPClient.fromConfigFile('./mcp-config.json')
```
---
## š Examples
We provide a comprehensive set of examples demonstrating various use cases. All examples are located in the `examples/` directory with a dedicated README.
### Running Examples
```bash
# Install dependencies
npm install
# Run any example
npm run example:airbnb # Search accommodations with Airbnb
npm run example:browser # Browser automation with Playwright
npm run example:chat # Interactive chat with memory
npm run example:stream # Demonstrate streaming methods (stream & streamEvents)
npm run example:stream_events # Comprehensive streamEvents() examples
npm run example:ai_sdk # AI SDK integration with streaming
npm run example:filesystem # File system operations
npm run example:http # HTTP server connection
npm run example:everything # Test MCP functionalities
npm run example:multi # Multiple servers in one session
```
### Example Highlights
- **Browser Automation**: Control browsers to navigate websites and extract information
- **File Operations**: Read, write, and manipulate files through MCP
- **Multi-Server**: Combine multiple MCP servers (Airbnb + Browser) in a single task
- **Sandboxed Execution**: Run MCP servers in isolated E2B containers
- **OAuth Flows**: Authenticate with services like Linear using OAuth2
- **Streaming Methods**: Demonstrate both step-by-step and token-level streaming
- **AI SDK Integration**: Build streaming UIs with Vercel AI SDK and React hooks
See the [examples README](./examples/README.md) for detailed documentation and prerequisites.
---
## š Multi-Server Example
```ts
const config = {
mcpServers: {
airbnb: { command: 'npx', args: ['@openbnb/mcp-server-airbnb'] },
playwright: { command: 'npx', args: ['@playwright/mcp@latest'] },
},
}
const client = MCPClient.fromDict(config)
const agent = new MCPAgent({ llm, client, useServerManager: true })
await agent.run('Search Airbnb in Barcelona, then Google restaurants nearby')
```
---
## š Tool Access Control
```ts
const agent = new MCPAgent({
llm,
client,
disallowedTools: ['file_system', 'network'],
})
```
---
## š„ļø MCP Server Framework
Beyond being a powerful MCP client, mcp-use also provides a complete server framework for building your own MCP servers with built-in UI capabilities and automatic inspector integration.
### Quick Server Setup
```ts
import { createMCPServer } from 'mcp-use/server'
// Create your MCP server
const server = createMCPServer('my-awesome-server', {
version: '1.0.0',
description: 'My MCP server with tools, resources, and prompts',
})
// Define tools
server.tool('search_web', {
description: 'Search the web for information',
parameters: z.object({
query: z.string().describe('Search query'),
}),
execute: async (args) => {
// Your tool implementation
return { results: await performSearch(args.query) }
},
})
// Define resources
server.resource('config', {
description: 'Application configuration',
uri: 'config://settings',
mimeType: 'application/json',
fetch: async () => {
return JSON.stringify(await getConfig(), null, 2)
},
})
// Define prompts
server.prompt('code_review', {
description: 'Review code for best practices',
arguments: [{ name: 'code', description: 'Code to review', required: true }],
render: async (args) => {
return `Please review this code:\n\n${args.code}`
},
})
// Start the server
server.listen(3000)
// š Inspector automatically available at http://localhost:3000/inspector
// š MCP endpoint available at http://localhost:3000/mcp
```
### Key Server Features
| Feature | Description |
| -------------------------- | ---------------------------------------------------------------- |
| **š Auto Inspector** | Inspector UI automatically mounts at `/inspector` for debugging |
| **šØ UI Widgets** | Build custom React UI components served alongside your MCP tools |
| **š OAuth Support** | Built-in OAuth flow handling for secure authentication |
| **š” Multiple Transports** | HTTP/SSE and WebSocket support out of the box |
| **š ļø TypeScript First** | Full TypeScript support with type inference |
| **ā»ļø Hot Reload** | Development mode with automatic reloading |
| **š Observability** | Built-in logging and monitoring capabilities |
### MCP-UI Resources
mcp-use provides a unified `uiResource()` method for registering interactive UI widgets that are compatible with MCP-UI clients. This automatically creates both a tool (for dynamic parameters) and a resource (for static access).
#### Quick Start
```ts
import { createMCPServer } from 'mcp-use/server'
const server = createMCPServer('my-server', { version: '1.0.0' })
// Register a widget - creates both tool and resource automatically
server.uiResource({
type: 'externalUrl',
name: 'kanban-board',
widget: 'kanban-board',
title: 'Kanban Board',
description: 'Interactive task management board',
props: {
initialTasks: {
type: 'array',
description: 'Initial tasks',
required: false,
},
theme: {
type: 'string',
default: 'light',
},
},
size: ['900px', '600px'],
})
server.listen(3000)
```
This automatically creates:
- **Tool**: `kanban-board` - Accepts parameters and returns UIResource
- **Resource**: `ui://widget/kanban-board` - Static access with defaults
#### Three Resource Types
**1. External URL (Iframe)**
Serve widgets from your filesystem via iframe:
```ts
server.uiResource({
type: 'externalUrl',
name: 'dashboard',
widget: 'dashboard',
props: { userId: { type: 'string', required: true } },
})
```
**2. Raw HTML**
Direct HTML content rendering:
```ts
server.uiResource({
type: 'rawHtml',
name: 'welcome-card',
htmlContent: `
<!DOCTYPE html>
<html>
<body><h1>Welcome!</h1></body>
</html>
`,
})
```
**3. Remote DOM**
Interactive components using MCP-UI React components:
```ts
server.uiResource({
type: 'remoteDom',
name: 'quick-poll',
script: `
const button = document.createElement('ui-button');
button.setAttribute('label', 'Vote');
root.appendChild(button);
`,
framework: 'react',
})
```
#### Get Started with Templates
```bash
# Create a new project with UIResource examples
npx create-mcp-use-app my-app
# Select: "MCP Server with UIResource widgets"
cd my-app
npm install
npm run dev
```
### Building Custom UI Widgets
mcp-use supports building custom UI widgets for your MCP tools using React:
```tsx
// resources/task-manager.tsx
import React, { useState } from 'react'
import { useMcp } from 'mcp-use/react'
export default function TaskManager() {
const { callTool } = useMcp()
const [tasks, setTasks] = useState<Task[]>([])
const addTask = async (title: string) => {
const result = await callTool('create_task', { title })
setTasks([...tasks, result])
}
return (
<div>
<h1>Task Manager</h1>
{/* Your UI implementation */}
</div>
)
}
```
Build and serve widgets using the mcp-use CLI:
```bash
# Development with hot reload and auto-open inspector
npx @mcp-use/cli dev
# Production build
npx @mcp-use/cli build
# Start production server
npx @mcp-use/cli start
```
### Advanced Server Configuration
```ts
const server = createMCPServer('advanced-server', {
version: '1.0.0',
description: 'Advanced MCP server with custom configuration',
// Custom inspector path (default: /inspector)
inspectorPath: '/debug',
// Custom MCP endpoint (default: /mcp)
mcpPath: '/api/mcp',
// Enable CORS for browser access
cors: {
origin: ['http://localhost:3000', 'https://myapp.com'],
credentials: true,
},
// OAuth configuration
oauth: {
clientId: process.env.OAUTH_CLIENT_ID,
clientSecret: process.env.OAUTH_CLIENT_SECRET,
authorizationUrl: 'https://api.example.com/oauth/authorize',
tokenUrl: 'https://api.example.com/oauth/token',
scopes: ['read', 'write'],
},
// Custom middleware
middleware: [authenticationMiddleware, rateLimitingMiddleware],
})
```
### Server Deployment
Deploy your MCP server to any Node.js hosting platform:
```bash
# Build for production
npm run build
# Start with PM2
pm2 start dist/index.js --name mcp-server
# Docker deployment
docker build -t my-mcp-server .
docker run -p 3000:3000 my-mcp-server
```
### Integration with Express
You can also integrate MCP server into existing Express applications:
```ts
import express from 'express'
import { mountMCPServer } from 'mcp-use/server'
const app = express()
// Your existing routes
app.get('/api/health', (req, res) => res.send('OK'))
// Mount MCP server
const mcpServer = createMCPServer('integrated-server', {
/* ... */
})
mountMCPServer(app, mcpServer, {
basePath: '/mcp-service', // Optional custom base path
})
app.listen(3000)
// Inspector at: http://localhost:3000/mcp-service/inspector
// MCP endpoint: http://localhost:3000/mcp-service/mcp
```
## š„ Contributors
<table>
<tr>
<td align="center" style="word-wrap: break-word; width: 150.0; height: 150.0">
<a href=https://github.com/pietrozullo>
<img src=https://avatars.githubusercontent.com/u/62951181?v=4 width="100;" style="border-radius:50%;align-items:center;justify-content:center;overflow:hidden;padding-top:10px" alt=Pietro Zullo/>
<br />
<sub style="font-size:14px"><b>Pietro Zullo</b></sub>
</a>
</td>
<td align="center" style="word-wrap: break-word; width: 150.0; height: 150.0">
<a href=https://github.com/zandko>
<img src=https://avatars.githubusercontent.com/u/37948383?v=4 width="100;" style="border-radius:50%;align-items:center;justify-content:center;overflow:hidden;padding-top:10px" alt=Zane/>
<br />
<sub style="font-size:14px"><b>Zane</b></sub>
</a>
</td>
<td align="center" style="word-wrap: break-word; width: 150.0; height: 150.0">
<a href=https://github.com/Pederzh>
<img src=https://avatars.githubusercontent.com/u/11487621?v=4 width="100;" style="border-radius:50%;align-items:center;justify-content:center;overflow:hidden;padding-top:10px" alt=Luigi Pederzani/>
<br />
<sub style="font-size:14px"><b>Luigi Pederzani</b></sub>
</a>
</td>
</tr>
</table>
<!-- Contributors section will be automatically generated here -->
## š License
MIT Ā© [Zane](https://github.com/zandko)