mcp-evals
Version:
GitHub Action for evaluating MCP server tool calls using LLM-based scoring
226 lines (161 loc) • 6.46 kB
Markdown
# MCP Evals
A Node.js package and GitHub Action for evaluating MCP (Model Context Protocol) tool implementations using LLM-based scoring, **with built-in observability support**. This helps ensure your MCP server's tools are working correctly, performing well, and are fully observable with integrated monitoring and metrics.
## Installation
### As a Node.js Package
```bash
npm install mcp-evals
```
### As a GitHub Action
Add the following to your workflow file:
```yaml
name: Run MCP Evaluations
on:
pull_request:
types: [opened, synchronize, reopened]
jobs:
evaluate:
runs-on: ubuntu-latest
permissions:
contents: read
pull-requests: write
steps:
- uses: actions/checkout@v4
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: '20'
- name: Install dependencies
run: npm install
- name: Run MCP Evaluations
uses: mclenhard/mcp-evals@v1.0.9
with:
evals_path: 'src/evals/evals.ts' # Can also use .yaml files
server_path: 'src/index.ts'
openai_api_key: ${{ secrets.OPENAI_API_KEY }}
model: 'gpt-4' # Optional, defaults to gpt-4
```
## Usage -- Evals
### 1. Create Your Evaluation File
You can create evaluation configurations in either TypeScript or YAML format.
#### Option A: TypeScript Configuration
Create a file (e.g., `evals.ts`) that exports your evaluation configuration:
```typescript
import { EvalConfig } from 'mcp-evals';
import { openai } from "@ai-sdk/openai";
import { grade, EvalFunction} from "mcp-evals";
const weatherEval: EvalFunction = {
name: 'Weather Tool Evaluation',
description: 'Evaluates the accuracy and completeness of weather information retrieval',
run: async () => {
const result = await grade(openai("gpt-4"), "What is the weather in New York?");
return JSON.parse(result);
}
};
const config: EvalConfig = {
model: openai("gpt-4"),
evals: [weatherEval]
};
export default config;
export const evals = [
weatherEval,
// add other evals here
];
```
#### Option B: YAML Configuration
For simpler configuration, you can use YAML format (e.g., `evals.yaml`):
```yaml
# Model configuration
model:
provider: openai # 'openai' or 'anthropic'
name: gpt-4o # Model name
# api_key: sk-... # Optional, uses OPENAI_API_KEY env var by default
# List of evaluations to run
evals:
- name: weather_query_basic
description: Test basic weather information retrieval
prompt: "What is the current weather in San Francisco?"
expected_result: "Should return current weather data for San Francisco including temperature, conditions, etc."
- name: weather_forecast
description: Test weather forecast functionality
prompt: "Can you give me the 3-day weather forecast for Seattle?"
expected_result: "Should return a multi-day forecast for Seattle"
- name: invalid_location
description: Test handling of invalid location requests
prompt: "What's the weather in Atlantis?"
expected_result: "Should handle invalid location gracefully with appropriate error message"
```
### 2. Run the Evaluations
#### As a Node.js Package
You can run the evaluations using the CLI with either TypeScript or YAML files:
```bash
# Using TypeScript configuration
npx mcp-eval path/to/your/evals.ts path/to/your/server.ts
# Using YAML configuration
npx mcp-eval path/to/your/evals.yaml path/to/your/server.ts
```
#### As a GitHub Action
The action will automatically:
1. Run your evaluations
2. Post the results as a comment on the PR
3. Update the comment if the PR is updated
## Evaluation Results
Each evaluation returns an object with the following structure:
```typescript
interface EvalResult {
accuracy: number; // Score from 1-5
completeness: number; // Score from 1-5
relevance: number; // Score from 1-5
clarity: number; // Score from 1-5
reasoning: number; // Score from 1-5
overall_comments: string; // Summary of strengths and weaknesses
}
```
## Configuration
### Environment Variables
- `OPENAI_API_KEY`: Your OpenAI API key (required for OpenAI models)
- `ANTHROPIC_API_KEY`: Your Anthropic API key (required for Anthropic models)
> [!NOTE]
> If you're using this GitHub Action with open source software, enable data sharing in the OpenAI billing dashboard to claim 2.5 million free GPT-4o mini tokens per day, making this Action effectively free to use.
### Evaluation Configuration
#### TypeScript Configuration
The `EvalConfig` interface requires:
- `model`: The language model to use for evaluation (e.g., GPT-4)
- `evals`: Array of evaluation functions to run
Each evaluation function must implement:
- `name`: Name of the evaluation
- `description`: Description of what the evaluation tests
- `run`: Async function that takes a model and returns an `EvalResult`
#### YAML Configuration
YAML configuration files support:
**Model Configuration:**
- `provider`: Either 'openai' or 'anthropic'
- `name`: Model name (e.g., 'gpt-4o', 'claude-3-opus-20240229')
- `api_key`: Optional API key (uses environment variables by default)
**Evaluation Configuration:**
- `name`: Name of the evaluation (required)
- `description`: Description of what the evaluation tests (required)
- `prompt`: The prompt to send to your MCP server (required)
- `expected_result`: Optional description of expected behavior
**Supported File Extensions:** `.yaml`, `.yml`
## Usage -- Monitoring
> **Note:** The metrics functionality is still in alpha. Features and APIs may change, and breaking changes are possible.
1. Add the following to your application before you initilize the MCP server.
```typescript
import { metrics } from 'mcp-evals';
metrics.initialize(9090, { enableTracing: true, otelEndpoint: 'http://localhost:4318/v1/traces' });
```
2. Start the monitoring stack:
```bash
docker-compose up -d
```
3. Run your MCP server and it will automatically connect to the monitoring stack.
### Accessing the Dashboards
- **Prometheus**: http://localhost:9090
- **Grafana**: http://localhost:3000 (username: admin, password: admin)
- **Jaeger UI**: http://localhost:16686
## Metrics Available
- **Tool Calls**: Number of tool calls by tool name
- **Tool Errors**: Number of errors by tool name
- **Tool Latency**: Distribution of latency times by tool name
## License
MIT