UNPKG

mcp-context-engineering

Version:

The intelligent context optimization system for AI coding assistants. Built with Cole's PRP methodology, Context Portal knowledge graphs, and production-ready MongoDB architecture.

174 lines (148 loc) 5.13 kB
import { ObjectId } from 'mongodb'; import { z } from 'zod'; // Individual effectiveness measurement export const EffectivenessMeasurementSchema = z.object({ measurement_id: z.string(), context_pattern_id: z.string(), agent_type: z.enum(['cursor', 'windsurf', 'claude_code', 'generic']), // Implementation results implementation_result: z.object({ success: z.boolean(), quality_score: z.number().min(0).max(10), time_to_completion: z.number().optional(), // minutes iterations_required: z.number(), user_satisfaction: z.number().min(0).max(10).optional() }), // Context effectiveness context_effectiveness: z.object({ relevance_score: z.number().min(0).max(10), completeness_score: z.number().min(0).max(10), clarity_score: z.number().min(0).max(10), actionability_score: z.number().min(0).max(10) }), // Specific feedback feedback: z.object({ what_worked: z.array(z.string()), what_failed: z.array(z.string()), missing_information: z.array(z.string()), suggestions: z.array(z.string()), agent_specific_notes: z.string() }), // Context metadata context_metadata: z.object({ feature_type: z.string(), complexity: z.enum(['low', 'medium', 'high']), project_type: z.string(), tech_stack: z.array(z.string()) }), timestamp: z.date() }); // Aggregated effectiveness analytics export const EffectivenessAnalyticsSchema = z.object({ pattern_id: z.string(), // Overall metrics overall: z.object({ total_usages: z.number(), success_rate: z.number().min(0).max(1), average_quality_score: z.number().min(0).max(10), average_relevance: z.number().min(0).max(10), trend: z.enum(['improving', 'stable', 'declining']) }), // Agent-specific metrics by_agent: z.record(z.object({ usage_count: z.number(), success_rate: z.number().min(0).max(1), average_quality_score: z.number().min(0).max(10), preferred_formats: z.array(z.string()), common_issues: z.array(z.string()), optimization_suggestions: z.array(z.string()) })), // Project type metrics by_project_type: z.record(z.object({ usage_count: z.number(), success_rate: z.number().min(0).max(1), average_quality_score: z.number().min(0).max(10), specific_adaptations: z.array(z.string()) })), // Complexity metrics by_complexity: z.record(z.object({ usage_count: z.number(), success_rate: z.number().min(0).max(1), average_completion_time: z.number().optional(), common_challenges: z.array(z.string()) })), // Learning insights insights: z.object({ top_success_factors: z.array(z.string()), common_failure_points: z.array(z.string()), optimization_opportunities: z.array(z.string()), cross_agent_learnings: z.array(z.string()) }), last_updated: z.date() }); // Cross-agent learning patterns export const CrossAgentLearningSchema = z.object({ learning_id: z.string(), // Source of learning source: z.object({ agent_type: z.string(), pattern_id: z.string(), success_factor: z.string(), context: z.string() }), // Applicability analysis applicability: z.object({ tested_agents: z.array(z.string()), success_rates: z.record(z.number()), adaptation_requirements: z.record(z.array(z.string())), limitations: z.array(z.string()) }), // Implementation guidance implementation: z.object({ universal_principle: z.string(), agent_specific_adaptations: z.record(z.string()), validation_criteria: z.array(z.string()), expected_impact: z.number().min(0).max(1) }), // Validation results validation: z.object({ tested: z.boolean(), validation_results: z.array(z.object({ agent_type: z.string(), before_score: z.number(), after_score: z.number(), improvement: z.number(), confirmed: z.boolean() })), deployment_ready: z.boolean() }), created_at: z.date(), updated_at: z.date() }); // Main effectiveness tracking schema export const EffectivenessTrackingSchema = z.object({ _id: z.instanceof(ObjectId).optional(), // Individual measurements measurements: z.array(EffectivenessMeasurementSchema), // Aggregated analytics analytics: EffectivenessAnalyticsSchema, // Cross-agent learning cross_agent_learning: z.array(CrossAgentLearningSchema), // System-wide insights system_insights: z.object({ most_effective_patterns: z.array(z.string()), agent_strengths: z.record(z.array(z.string())), universal_success_factors: z.array(z.string()), improvement_priorities: z.array(z.string()) }), metadata: z.object({ last_analysis: z.date(), next_analysis_due: z.date(), analysis_version: z.number() }) }); // TypeScript types export type EffectivenessMeasurement = z.infer<typeof EffectivenessMeasurementSchema>; export type EffectivenessAnalytics = z.infer<typeof EffectivenessAnalyticsSchema>; export type CrossAgentLearning = z.infer<typeof CrossAgentLearningSchema>; export type EffectivenessTracking = z.infer<typeof EffectivenessTrackingSchema>;