mcp-context-engineering
Version:
The intelligent context optimization system for AI coding assistants. Built with Cole's PRP methodology, Context Portal knowledge graphs, and production-ready MongoDB architecture.
144 lines (143 loc) • 5.13 kB
JavaScript
import { ObjectId } from 'mongodb';
import { z } from 'zod';
// Individual effectiveness measurement
export const EffectivenessMeasurementSchema = z.object({
measurement_id: z.string(),
context_pattern_id: z.string(),
agent_type: z.enum(['cursor', 'windsurf', 'claude_code', 'generic']),
// Implementation results
implementation_result: z.object({
success: z.boolean(),
quality_score: z.number().min(0).max(10),
time_to_completion: z.number().optional(), // minutes
iterations_required: z.number(),
user_satisfaction: z.number().min(0).max(10).optional()
}),
// Context effectiveness
context_effectiveness: z.object({
relevance_score: z.number().min(0).max(10),
completeness_score: z.number().min(0).max(10),
clarity_score: z.number().min(0).max(10),
actionability_score: z.number().min(0).max(10)
}),
// Specific feedback
feedback: z.object({
what_worked: z.array(z.string()),
what_failed: z.array(z.string()),
missing_information: z.array(z.string()),
suggestions: z.array(z.string()),
agent_specific_notes: z.string()
}),
// Context metadata
context_metadata: z.object({
feature_type: z.string(),
complexity: z.enum(['low', 'medium', 'high']),
project_type: z.string(),
tech_stack: z.array(z.string())
}),
timestamp: z.date()
});
// Aggregated effectiveness analytics
export const EffectivenessAnalyticsSchema = z.object({
pattern_id: z.string(),
// Overall metrics
overall: z.object({
total_usages: z.number(),
success_rate: z.number().min(0).max(1),
average_quality_score: z.number().min(0).max(10),
average_relevance: z.number().min(0).max(10),
trend: z.enum(['improving', 'stable', 'declining'])
}),
// Agent-specific metrics
by_agent: z.record(z.object({
usage_count: z.number(),
success_rate: z.number().min(0).max(1),
average_quality_score: z.number().min(0).max(10),
preferred_formats: z.array(z.string()),
common_issues: z.array(z.string()),
optimization_suggestions: z.array(z.string())
})),
// Project type metrics
by_project_type: z.record(z.object({
usage_count: z.number(),
success_rate: z.number().min(0).max(1),
average_quality_score: z.number().min(0).max(10),
specific_adaptations: z.array(z.string())
})),
// Complexity metrics
by_complexity: z.record(z.object({
usage_count: z.number(),
success_rate: z.number().min(0).max(1),
average_completion_time: z.number().optional(),
common_challenges: z.array(z.string())
})),
// Learning insights
insights: z.object({
top_success_factors: z.array(z.string()),
common_failure_points: z.array(z.string()),
optimization_opportunities: z.array(z.string()),
cross_agent_learnings: z.array(z.string())
}),
last_updated: z.date()
});
// Cross-agent learning patterns
export const CrossAgentLearningSchema = z.object({
learning_id: z.string(),
// Source of learning
source: z.object({
agent_type: z.string(),
pattern_id: z.string(),
success_factor: z.string(),
context: z.string()
}),
// Applicability analysis
applicability: z.object({
tested_agents: z.array(z.string()),
success_rates: z.record(z.number()),
adaptation_requirements: z.record(z.array(z.string())),
limitations: z.array(z.string())
}),
// Implementation guidance
implementation: z.object({
universal_principle: z.string(),
agent_specific_adaptations: z.record(z.string()),
validation_criteria: z.array(z.string()),
expected_impact: z.number().min(0).max(1)
}),
// Validation results
validation: z.object({
tested: z.boolean(),
validation_results: z.array(z.object({
agent_type: z.string(),
before_score: z.number(),
after_score: z.number(),
improvement: z.number(),
confirmed: z.boolean()
})),
deployment_ready: z.boolean()
}),
created_at: z.date(),
updated_at: z.date()
});
// Main effectiveness tracking schema
export const EffectivenessTrackingSchema = z.object({
_id: z.instanceof(ObjectId).optional(),
// Individual measurements
measurements: z.array(EffectivenessMeasurementSchema),
// Aggregated analytics
analytics: EffectivenessAnalyticsSchema,
// Cross-agent learning
cross_agent_learning: z.array(CrossAgentLearningSchema),
// System-wide insights
system_insights: z.object({
most_effective_patterns: z.array(z.string()),
agent_strengths: z.record(z.array(z.string())),
universal_success_factors: z.array(z.string()),
improvement_priorities: z.array(z.string())
}),
metadata: z.object({
last_analysis: z.date(),
next_analysis_due: z.date(),
analysis_version: z.number()
})
});