mcp-context-engineering
Version:
The intelligent context optimization system for AI coding assistants. Built with Cole's PRP methodology, Context Portal knowledge graphs, and production-ready MongoDB architecture.
75 lines (74 loc) • 2.5 kB
TypeScript
import { ResearchEngine } from '../ResearchEngine.js';
import { ContextPatternOperations } from '../../mongodb/operations/contextPatternOperations.js';
export interface PRPGenerationRequest {
feature_description: string;
project_context: {
project_id: string;
current_patterns: string[];
tech_stack: string[];
complexity_preference: 'low' | 'medium' | 'high';
};
agent_type: 'cursor' | 'windsurf' | 'claude_code' | 'generic';
research_depth: 'basic' | 'comprehensive' | 'exhaustive';
include_learning: boolean;
}
export interface PRPResult {
prp_template: {
header: {
goal: string;
business_value: string;
estimated_complexity: string;
};
research_section: {
codebase_analysis: string[];
external_research: string[];
potential_challenges: string[];
confidence_score: number;
};
implementation_section: {
technical_requirements: string[];
pseudocode: string;
task_breakdown: Array<{
task: string;
order: number;
dependencies: string[];
validation: string;
estimated_effort: string;
}>;
error_handling_strategy: string;
};
validation_section: {
unit_test_commands: string[];
quality_checklist: string[];
acceptance_criteria: string[];
};
knowledge_connections: {
related_decisions: string[];
};
agent_guidance: {
cursor_specific: string;
windsurf_specific: string;
claude_code_specific: string;
universal_notes: string;
};
};
agent_optimization: {
formatted_output: string;
complexity_level: string;
implementation_confidence: number;
};
context_pattern?: any;
}
export declare class PRPGenerator {
private researchEngine;
private contextPatternOps;
private embeddingService;
constructor(researchEngine: ResearchEngine, contextPatternOps: ContextPatternOperations, embeddingService?: any);
generatePRP(request: PRPGenerationRequest): Promise<PRPResult>;
private createImplementationBlueprint;
private generateStepByStepPlan;
private identifyConstraints;
private createValidationFramework;
private formatForAgent;
private createContextPattern;
}