UNPKG

mcp-context-engineering

Version:

The intelligent context optimization system for AI coding assistants. Built with Cole's PRP methodology, Context Portal knowledge graphs, and production-ready MongoDB architecture.

75 lines (74 loc) 2.5 kB
import { ResearchEngine } from '../ResearchEngine.js'; import { ContextPatternOperations } from '../../mongodb/operations/contextPatternOperations.js'; export interface PRPGenerationRequest { feature_description: string; project_context: { project_id: string; current_patterns: string[]; tech_stack: string[]; complexity_preference: 'low' | 'medium' | 'high'; }; agent_type: 'cursor' | 'windsurf' | 'claude_code' | 'generic'; research_depth: 'basic' | 'comprehensive' | 'exhaustive'; include_learning: boolean; } export interface PRPResult { prp_template: { header: { goal: string; business_value: string; estimated_complexity: string; }; research_section: { codebase_analysis: string[]; external_research: string[]; potential_challenges: string[]; confidence_score: number; }; implementation_section: { technical_requirements: string[]; pseudocode: string; task_breakdown: Array<{ task: string; order: number; dependencies: string[]; validation: string; estimated_effort: string; }>; error_handling_strategy: string; }; validation_section: { unit_test_commands: string[]; quality_checklist: string[]; acceptance_criteria: string[]; }; knowledge_connections: { related_decisions: string[]; }; agent_guidance: { cursor_specific: string; windsurf_specific: string; claude_code_specific: string; universal_notes: string; }; }; agent_optimization: { formatted_output: string; complexity_level: string; implementation_confidence: number; }; context_pattern?: any; } export declare class PRPGenerator { private researchEngine; private contextPatternOps; private embeddingService; constructor(researchEngine: ResearchEngine, contextPatternOps: ContextPatternOperations, embeddingService?: any); generatePRP(request: PRPGenerationRequest): Promise<PRPResult>; private createImplementationBlueprint; private generateStepByStepPlan; private identifyConstraints; private createValidationFramework; private formatForAgent; private createContextPattern; }