mcp-ai-agent-guidelines
Version:
A comprehensive Model Context Protocol server providing advanced tools, resources, and prompts for implementing AI agent best practices
953 lines (696 loc) β’ 47.3 kB
Markdown
<!-- HEADER:START -->

<!-- HEADER:END -->
# MCP AI Agent Guidelines Server
> [!CAUTION] > **Disclaimer -- Experimental / Early Stage:** This _research demonstrator_ project references thirdβparty models, tools, pricing, and docs that evolve quickly. Treat outputs as recommendations and verify against official docs and your own benchmarks before production use.
[](https://github.com/Anselmoo/mcp-ai-agent-guidelines/actions/workflows/ci-cd.yml)
[](https://github.com/Anselmoo/mcp-ai-agent-guidelines/actions/workflows/auto-regenerate-demos.yml)
[](https://github.com/Anselmoo/mcp-ai-agent-guidelines/actions/workflows/link-checker.yml)
[](https://codecov.io/gh/Anselmoo/mcp-ai-agent-guidelines)
[](https://nodejs.org/en/download/)
[](https://github.com/Anselmoo/mcp-ai-agent-guidelines/pkgs/container/mcp-ai-agent-guidelines)
[](./LICENSE)
[](https://github.com/Anselmoo/mcp-ai-agent-guidelines/stargazers)
[](https://github.com/Anselmoo/mcp-ai-agent-guidelines/network/members)
[](https://github.com/Anselmoo/mcp-ai-agent-guidelines/issues)
[](https://github.com/Anselmoo/mcp-ai-agent-guidelines/commits/main)
A Model Context Protocol (MCP) server offering advanced tools and templates for hierarchical prompting, code hygiene, visualization, memory optimization, and agile planning.
## π Table of Contents
- [Installation](#installation)
- [Documentation](#documentation)
- [Demos](#demos)
- [Features](#features)
- [VS Code Integration](#vs-code-integration-one-click)
- [Agent-Relative Calls](#agent-relative-calls)
- [Configuration](#configuration)
- [Development](#development)
- [Contributing](#contributing)
- [Changelog](./CHANGELOG.md)
- [License](#license)
## Installation
```bash
# NPX (recommended)
npx mcp-ai-agent-guidelines
# NPM global
npm install -g mcp-ai-agent-guidelines
# From source
git clone https://github.com/Anselmoo/mcp-ai-agent-guidelines.git
cd mcp-ai-agent-guidelines
npm ci && npm run build && npm start
```
### Scripts
```bash
npm run build # TypeScript build
npm run start # Build and start server
npm run test:all # Unit + integration + demos + MCP smoke
npm run test:coverage:unit # Unit test coverage (c8) -> coverage/ + summary
npm run quality # Type-check + Biome checks
npm run links:check # Check links in main markdown files
npm run links:check:all # Check links in all markdown files (slow)
```
### Local Link Checking
The project includes automated link checking via GitHub Actions. To check links locally before committing:
```bash
# Quick check (README, CONTRIBUTING, DISCLAIMER)
npm run links:check
# Comprehensive check (all markdown files)
npm run links:check:all
# Or use npx directly
npx markdown-link-check --config .mlc_config.json README.md
```
Configuration is in `.mlc_config.json`. Ignored patterns and retries are configured there.
## Documentation
## Documentation
**[π Complete Documentation Index](./docs/README.md)** - Full guide to all tools and features
### Getting Started Guides
- **[π― AI Interaction Tips](./docs/tips/AI_INTERACTION_TIPS.md)** - Learn to ask targeted questions for better results
- **[π Prompting Hierarchy](./docs/tips/PROMPTING_HIERARCHY.md)** - Understanding prompt levels and evaluation
- **[π Agent-Relative Call Patterns](./docs/tips/AGENT_RELATIVE_CALLS.md)** - Invoking tools in workflows
### Advanced Features
- **[π Flow-Based Prompting](./docs/tips/FLOW_PROMPTING_EXAMPLES.md)** - Multi-step prompt workflows
- **[π¨ Mermaid Diagram Generation](./docs/tips/MERMAID_DIAGRAM_EXAMPLES.md)** - Create flowcharts, sequences, ER diagrams
- **[π Code Quality Analysis](./docs/tips/CODE_QUALITY_IMPROVEMENTS.md)** - Hygiene scoring and best practices
- **[β‘ Sprint Planning](./docs/tips/SPRINT_PLANNING_RELIABILITY.md)** - Dependency-aware timeline calculation
### Integration & Reference
- **[ποΈ Bridge Connectors](./docs/tips/BRIDGE_CONNECTORS.md)** - Integration patterns for external systems
- **[π Serena Integration](./docs/tips/SERENA_STRATEGIES.md)** - Semantic analysis strategies
- **[π Complete Reference](./docs/tips/REFERENCES.md)** - Credits, research papers, and citations
See **[docs/README.md](./docs/README.md)** for the complete documentation index.
### Quick Links
#### For Users
- **[π― AI Interaction Tips](./docs/tips/AI_INTERACTION_TIPS.md)** - Learn to ask targeted questions for better results
- **[π Prompting Hierarchy](./docs/tips/PROMPTING_HIERARCHY.md)** - Understanding prompt levels and evaluation
- **[π Agent-Relative Call Patterns](./docs/tips/AGENT_RELATIVE_CALLS.md)** - Invoking tools in workflows
- **[π Flow-Based Prompting](./docs/tips/FLOW_PROMPTING_EXAMPLES.md)** - Advanced chaining strategies
- **[π¨ Mermaid Diagrams](./docs/tips/MERMAID_DIAGRAM_EXAMPLES.md)** - Visual diagram generation
#### For Developers
- **[π€ Contributing Guidelines](./CONTRIBUTING.md)** - How to contribute
- **[β¨ Clean Code Initiative](./docs/tips/CLEAN_CODE_INITIATIVE.md)** - Quality standards (100/100 scoring)
- **[π§ Technical Improvements](./docs/tips/TECHNICAL_IMPROVEMENTS.md)** - Refactoring and enhancements
- **[β οΈ Error Handling](./docs/tips/ERROR_HANDLING.md)** - Best practices
- **[ποΈ Bridge Connectors](./docs/tips/BRIDGE_CONNECTORS.md)** - Integration patterns
#### For Maintainers
- **[π¦ Export Formats Guide](./docs/EXPORT_FORMATS.md)** - LaTeX, CSV, JSON export options and chat integration
- **[π€ Model Management Guide](./docs/MODEL_MANAGEMENT.md)** - Managing AI model definitions in YAML
See the **[complete documentation](./docs/README.md)** for the full list of guides organized by topic.
## Demos
Explore real-world examples showing the tools in action. All demos are auto-generated and kept in sync with the codebase.
**[π Complete Demo Index](./demos/README.md)** - Full list of all demos with descriptions
### Featured Examples
**Code Analysis & Quality:**
- [Code Hygiene Report](./demos/demo-code-analysis.hygiene.md) - Pattern detection and best practices
- [Guidelines Validation](./demos/demo-code-analysis.guidelines.md) - AI agent development standards
- [Clean Code Scoring](./demos/demo-clean-code-score.md) - Comprehensive quality metrics (0-100)
**Prompt Engineering:**
- [Hierarchical Prompt](./demos/demo-code-analysis.hierarchical.prompt.md) - Structured refactoring plan
- [Domain-Neutral Prompt](./demos/demo-code-analysis.domain-neutral.prompt.md) - Generic template
- [Security Hardening Prompt](./demos/demo-code-analysis.security-hardening.prompt.md) - OWASP-focused analysis
- [Flow-Based Prompting](./demos/demo-design-session.md) - Multi-step workflows
**Visualization & Planning:**
- [Architecture Diagram](./demos/demo-code-analysis.diagram.md) - Mermaid system diagrams
- [Sprint Planning](./demos/demo-code-analysis.sprint.md) - Dependency-aware timeline
- [Model Compatibility](./demos/demo-code-analysis.model-compat.md) - AI model selection
**Advanced Features:**
- [Memory Context Optimization](./demos/demo-code-analysis.memory.md) - Token efficiency
- [Strategy Frameworks](./demos/demo-strategy-frameworks.md) - SWOT, BCG, Porter's Five Forces
- [Gap Analysis](./demos/demo-gap-analysis.md) - Current vs. desired state
### Running Demos Locally
```bash
npm run build
node demos/demo-tools.js # Generate sample tool outputs
```
Demos are automatically regenerated when tool code changes via GitHub Actions.
## Features & Tools
**27 professional tools** for AI-powered development workflows. Each tool is rated by complexity:
**β Complexity Ratings:**
- β **Simple** - Single input, immediate output (5-10 min to master)
- ββ **Moderate** - Multiple parameters, straightforward usage (15-30 min)
- βββ **Advanced** - Complex inputs, requires understanding of domain (1-2 hours)
- ββββ **Expert** - Multi-phase workflows, deep domain knowledge (half day)
- βββββ **Master** - Enterprise-scale, comprehensive orchestration (1-2 days)
**π [Complete Tools Reference](./docs/tips/TOOLS_REFERENCE.md)** - Detailed documentation with examples
---
### π¨ Prompt Builders (9 tools)
Build structured, effective prompts for various use cases.
| Tool | Purpose | Complexity | Learn More |
| --------------------------------------------- | --------------------------------------------------------------- | ---------- | -------------------------------------------------------------------- |
| `hierarchical-prompt-builder` | Multi-level specificity prompts (context β goal β requirements) | ββ | [Guide](./docs/tools/hierarchical-prompt-builder.md) |
| `code-analysis-prompt-builder` | Code review prompts (security, performance, maintainability) | ββ | [Guide](./docs/tools/code-analysis-prompt-builder.md) |
| `architecture-design-prompt-builder` | Architecture design with scale-appropriate guidance | βββ | [Guide](./docs/tools/architecture-design-prompt-builder.md) |
| `digital-enterprise-architect-prompt-builder` | Enterprise architecture with mentor perspectives & research | ββββ | [Guide](./docs/tools/digital-enterprise-architect-prompt-builder.md) |
| `debugging-assistant-prompt-builder` | Systematic debugging prompts with structured analysis | ββ | [Guide](./docs/tools/debugging-assistant-prompt-builder.md) |
| `l9-distinguished-engineer-prompt-builder` | L9 (Distinguished Engineer) high-level technical design | βββββ | [Guide](./docs/tools/l9-distinguished-engineer-prompt-builder.md) |
| `documentation-generator-prompt-builder` | Technical docs tailored to audience (API, user guide, spec) | ββ | [Guide](./docs/tools/documentation-generator-prompt-builder.md) |
| `domain-neutral-prompt-builder` | Generic templates with objectives and workflows | βββ | [Guide](./docs/tools/domain-neutral-prompt-builder.md) |
| `security-hardening-prompt-builder` | Security analysis with OWASP/compliance focus | βββ | [Guide](./docs/tools/security-hardening-prompt-builder.md) |
### π Code Analysis & Quality (7 tools)
Analyze and improve code quality with automated insights.
| Tool | Purpose | Complexity | Learn More |
| ----------------------------- | ------------------------------------------------------------------ | ---------- | ---------------------------------------------------- |
| `clean-code-scorer` | Comprehensive 0-100 quality score with metric breakdown | βββ | [Guide](./docs/tools/clean-code-scorer.md) |
| `code-hygiene-analyzer` | Detect outdated patterns, unused dependencies, code smells | ββ | [Guide](./docs/tools/code-hygiene-analyzer.md) |
| `dependency-auditor` | Audit package.json for security, deprecation, ESM compatibility | β | [Guide](./docs/tools/dependency-auditor.md) |
| `iterative-coverage-enhancer` | Analyze coverage gaps, generate test suggestions, adapt thresholds | βββ | [Guide](./docs/tools/iterative-coverage-enhancer.md) |
| `semantic-code-analyzer` | Identify symbols, structure, dependencies, patterns (LSP-based) | ββ | [Guide](./docs/tools/semantic-code-analyzer.md) |
| `guidelines-validator` | Validate practices against AI agent development guidelines | β | [Guide](./docs/tools/guidelines-validator.md) |
| `mermaid-diagram-generator` | Generate visual diagrams (flowchart, sequence, ER, class, etc.) | ββ | [Guide](./docs/tools/mermaid-diagram-generator.md) |
### π Strategy & Planning (5 tools)
Business strategy analysis and agile project planning.
| Tool | Purpose | Complexity | Learn More |
| ----------------------------- | --------------------------------------------------------------------- | ---------- | ---------------------------------------------------- |
| `strategy-frameworks-builder` | SWOT, BSC, VRIO, Porter's Five Forces, market analysis | βββ | [Guide](./docs/tools/strategy-frameworks-builder.md) |
| `gap-frameworks-analyzers` | Capability, technology, maturity, skills gap analysis | βββ | [Guide](./docs/tools/gap-frameworks-analyzers.md) |
| `sprint-timeline-calculator` | Dependency-aware sprint planning with bin-packing optimization | ββ | [Guide](./docs/tools/sprint-timeline-calculator.md) |
| `model-compatibility-checker` | Recommend best AI models for task requirements and budget | β | [Guide](./docs/tools/model-compatibility-checker.md) |
| `project-onboarding` | Comprehensive project structure analysis and documentation generation | ββ | [Guide](./docs/tools/project-onboarding.md) |
### π¨ Design Workflow (1 tool)
Multi-phase design orchestration with constraint enforcement.
| Tool | Purpose | Complexity | Learn More |
| ------------------ | ---------------------------------------------------------------------------------- | ---------- | ----------------------------------------- |
| `design-assistant` | Constraint-driven design sessions with artifact generation (ADRs, specs, roadmaps) | ββββ | [Guide](./docs/tools/design-assistant.md) |
### π οΈ Utilities (5 tools)
Supporting tools for workflow optimization.
| Tool | Purpose | Complexity | Learn More |
| ------------------------------- | ----------------------------------------------------------------------------------- | ---------- | ------------------------------------------------------ |
| `memory-context-optimizer` | Optimize prompt caching and context window usage | ββ | [Guide](./docs/tools/memory-context-optimizer.md) |
| `mode-switcher` | Switch between agent operation modes (planning, debugging, refactoring) | β | [Guide](./docs/tools/mode-switcher.md) |
| `prompting-hierarchy-evaluator` | Evaluate prompts with numeric scoring (clarity, specificity, completeness) | ββ | [Guide](./docs/tools/prompting-hierarchy-evaluator.md) |
| `hierarchy-level-selector` | Select optimal prompting level for task complexity | β | [Guide](./docs/tools/hierarchy-level-selector.md) |
| `spark-prompt-builder` | Build UI/UX product prompts with structured inputs (colors, typography, components) | βββ | [Guide](./docs/tools/spark-prompt-builder.md) |
**π‘ Pro Tip**: Start with β tools to learn the basics, then progress to βββ+ tools for advanced workflows.
---
## VS Code Integration (One-Click)
Use buttons below to add this MCP server to VS Code (User Settings β mcp.servers):
[](https://insiders.vscode.dev/redirect/mcp/install?name=ai-agent-guidelines&config=%7B%22command%22%3A%22npx%22%2C%22args%22%3A%5B%22-y%22%2C%22mcp-ai-agent-guidelines%3Alatest%22%5D%7D)
[](https://insiders.vscode.dev/redirect/mcp/install?name=ai-agent-guidelines&config=%7B%22command%22%3A%22npx%22%2C%22args%22%3A%5B%22-y%22%2C%22mcp-ai-agent-guidelines%3Alatest%22%5D%7D&quality=insiders)
[](https://insiders.vscode.dev/redirect/mcp/install?name=ai-agent-guidelines&config=%7B%22command%22%3A%22docker%22%2C%22args%22%3A%5B%22run%22%2C%22--rm%22%2C%22-i%22%2C%22ghcr.io%2Fanselmoo%2Fmcp-ai-agent-guidelines%3Alatest%22%5D%7D)
[](https://insiders.vscode.dev/redirect/mcp/install?name=ai-agent-guidelines&config=%7B%22command%22%3A%22docker%22%2C%22args%22%3A%5B%22run%22%2C%22--rm%22%2C%22-i%22%2C%22ghcr.io%2Fanselmoo%2Fmcp-ai-agent-guidelines%3Alatest%22%5D%7D&quality=insiders)
Manual settings (User Settings JSON):
```json
{
"mcp": {
"servers": {
"ai-agent-guidelines": {
"command": "npx",
"args": ["-y", "mcp-ai-agent-guidelines"]
}
}
}
}
```
Using Docker:
```json
{
"mcp": {
"servers": {
"ai-agent-guidelines": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"ghcr.io/anselmoo/mcp-ai-agent-guidelines:latest"
]
}
}
}
}
```
## Use tools from a chat window (VS Code/Cline)
After adding the server, open your chat client (e.g., Cline in VS Code). The tools appear under the server name. You can:
- Run a tool directly by name:
- `hierarchical-prompt-builder` β Provide context, goal, and optional requirements.
- `clean-code-scorer` β Calculate comprehensive Clean Code score (0-100) with coverage metrics.
- `code-hygiene-analyzer` β Paste code or point to a file and set language.
- `mermaid-diagram-generator` β Describe the system and select a diagram type.
- Ask in natural language and pick the suggested tool.
Example prompts:
- "Use hierarchical-prompt-builder to create a refactor plan for src/index.ts with outputFormat markdown."
- "Use clean-code-scorer to analyze my project with current coverage metrics and get a quality score."
- "Analyze this Python file with code-hygiene-analyzer; highlight security issues."
- "Generate a Mermaid sequence diagram showing: User sends request to API, API queries Database, Database returns data, API responds to User."
- "Create an ER diagram for: Customer has Orders, Order contains LineItems, Product referenced in LineItems."
- "Build a user journey map for our checkout flow using mermaid-diagram-generator."
Tip: Most clients can pass file content automatically when you select a file and invoke a tool.
GitHub Chat (VS Code): In the chat, type your request and pick a tool suggestion, or explicitly reference a tool by name (e.g., βUse mermaid-diagram-generator to draw a flowchart for our pipelineβ).
## Agent-Relative Calls
This MCP server fully supports **agent-relative calls**, the MCP standard pattern for enabling AI agents to discover and invoke tools contextually. Following the [GitHub MCP documentation](https://docs.github.com/en/copilot/tutorials/enhance-agent-mode-with-mcp), agents can use natural language patterns to orchestrate complex multi-tool workflows.
### What Are Agent-Relative Calls?
Agent-relative calls are natural language patterns like:
```markdown
Use the [tool-name] MCP to [action] with [parameters/context]
```
### Quick Examples
**Single Tool Invocation:**
```markdown
Use the hierarchical-prompt-builder MCP to create a code review prompt for our authentication module focusing on security best practices and OAuth2 implementation.
```
**Multi-Tool Workflow:**
```markdown
1. Use the clean-code-scorer MCP to establish baseline quality metrics
2. Use the code-hygiene-analyzer MCP to identify specific technical debt
3. Use the security-hardening-prompt-builder MCP to create a remediation plan
4. Use the sprint-timeline-calculator MCP to estimate implementation timeline
```
**Integration with Other MCP Servers:**
```markdown
# Accessibility Compliance Workflow
Use the Figma MCP to analyze design specifications for WCAG 2.1 AA compliance.
Use the security-hardening-prompt-builder MCP from AI Agent Guidelines to create accessibility security audit prompts.
Use the GitHub MCP to categorize open accessibility issues.
Use the iterative-coverage-enhancer MCP from AI Agent Guidelines to plan accessibility test coverage.
Use the Playwright MCP to create and run automated accessibility tests.
```
### Comprehensive Guide
For complete documentation with 20+ detailed examples, workflow patterns, and best practices, see:
π **[Agent-Relative Call Patterns Guide](./docs/tips/AGENT_RELATIVE_CALLS.md)**
This guide covers:
- Core prompt patterns (single tool, chains, parallel, conditional)
- Tool categories with complete usage examples
- Multi-MCP server integration workflows
- Best practices for agent-driven development
- Performance optimization techniques
- Troubleshooting common issues
### Available Resources
Access agent-relative call guidance via MCP resources:
```markdown
Use the resource guidelines://agent-relative-calls to get comprehensive patterns and examples
```
Or access programmatically:
```typescript
// MCP ReadResource request
{
uri: "guidelines://agent-relative-calls";
}
```
## Features
<details>
<summary><strong>π Prompt Chaining Builder</strong> β Multi-step prompts with output passing</summary>
Usage: `prompt-chaining-builder`
| Parameter | Required | Description |
| ------------------- | -------- | ---------------------------------- |
| `chainName` | β
| Name of the prompt chain |
| `steps` | β
| Array of chain steps with prompts |
| `description` | β | Description of chain purpose |
| `context` | β | Global context for the chain |
| `globalVariables` | β | Variables accessible to all steps |
| `executionStrategy` | β | sequential/parallel-where-possible |
Build sophisticated multi-step prompt workflows where each step can depend on outputs from previous steps. Supports error handling strategies (skip/retry/abort) and automatic Mermaid visualization.
**Example:**
```typescript
{
chainName: "Security Analysis Pipeline",
steps: [
{
name: "Scan",
prompt: "Scan for vulnerabilities",
outputKey: "vulns"
},
{
name: "Assess",
prompt: "Assess severity of {{vulns}}",
dependencies: ["vulns"],
errorHandling: "retry"
}
]
}
```
</details>
<details>
<summary><strong>π Prompt Flow Builder</strong> β Declarative flows with branching/loops</summary>
Usage: `prompt-flow-builder`
| Parameter | Required | Description |
| -------------- | -------- | ----------------------------------------------------------- |
| `flowName` | β
| Name of the prompt flow |
| `nodes` | β
| Flow nodes (prompt/condition/loop/parallel/merge/transform) |
| `edges` | β | Connections between nodes with conditions |
| `entryPoint` | β | Starting node ID |
| `variables` | β | Flow-level variables |
| `outputFormat` | β | markdown/mermaid/both |
Create complex adaptive prompt flows with conditional branching, loops, parallel execution, and merge points. Automatically generates Mermaid flowcharts and execution guides.
**Example:**
```typescript
{
flowName: "Adaptive Code Review",
nodes: [
{ id: "analyze", type: "prompt", name: "Analyze" },
{ id: "check", type: "condition", name: "Complex?",
config: { expression: "complexity > 10" } },
{ id: "deep", type: "prompt", name: "Deep Review" },
{ id: "quick", type: "prompt", name: "Quick Check" }
],
edges: [
{ from: "analyze", to: "check" },
{ from: "check", to: "deep", condition: "true" },
{ from: "check", to: "quick", condition: "false" }
]
}
```
</details>
<details>
<summary><strong>π Semantic Code Analyzer</strong> β Symbol-based code understanding</summary>
Usage: `semantic-code-analyzer`
| Parameter | Required | Description |
| -------------- | -------- | ------------------------------------------- |
| `codeContent` | β
| Code content to analyze |
| `language` | β | Programming language (auto-detected) |
| `analysisType` | β | symbols/structure/dependencies/patterns/all |
Performs semantic analysis to identify symbols, dependencies, patterns, and structure. Inspired by Serena's language server approach.
</details>
<details>
<summary><strong>π Project Onboarding</strong> β Comprehensive project familiarization</summary>
Usage: `project-onboarding`
| Parameter | Required | Description |
| ----------------- | -------- | ----------------------------------------- |
| `projectPath` | β
| Path to project directory |
| `projectName` | β | Name of the project |
| `projectType` | β | library/application/service/tool/other |
| `analysisDepth` | β | quick/standard/deep |
| `includeMemories` | β | Generate project memories (default: true) |
Analyzes project structure, detects technologies, and generates memories for context retention. Based on Serena's onboarding system.
</details>
<details>
<summary><strong>π Mode Switcher</strong> β Flexible agent operation modes</summary>
Usage: `mode-switcher`
| Parameter | Required | Description |
| ------------- | -------- | -------------------------------------------------- |
| `targetMode` | β
| Mode to switch to (planning/editing/analysis/etc.) |
| `currentMode` | β | Current active mode |
| `context` | β | Operating context (desktop-app/ide-assistant/etc.) |
| `reason` | β | Reason for mode switch |
Switches between operation modes with optimized tool sets and prompting strategies. Modes include: planning, editing, analysis, interactive, one-shot, debugging, refactoring, documentation.
</details>
<details>
<summary><strong>Hierarchical Prompt Builder</strong> β Build structured prompts with clear hierarchies</summary>
Usage: `hierarchical-prompt-builder`
| Parameter | Required | Description |
| -------------- | -------- | ------------------------------------- |
| `context` | β
| The broad context or domain |
| `goal` | β
| The specific goal or objective |
| `requirements` | β | Detailed requirements and constraints |
| `outputFormat` | β | Desired output format |
| `audience` | β | Target audience or expertise level |
</details>
<details>
<summary><strong>Code Hygiene Analyzer</strong> β Analyze codebase for outdated patterns and hygiene issues</summary>
Usage: `code-hygiene-analyzer`
| Parameter | Required | Description |
| ------------- | -------- | ----------------------------- |
| `codeContent` | β
| Code content to analyze |
| `language` | β
| Programming language |
| `framework` | β | Framework or technology stack |
</details>
<details>
<summary><strong>Security Hardening Prompt Builder</strong> β Build specialized security analysis and vulnerability assessment prompts</summary>
Usage: `security-hardening-prompt-builder`
| Parameter | Required | Description |
| ---------------------- | -------- | ---------------------------------------------------------------------------------------------------------------------------- |
| `codeContext` | β
| Code context or description to analyze for security |
| `securityFocus` | β | Security analysis focus (vulnerability-analysis, security-hardening, compliance-check, threat-modeling, penetration-testing) |
| `securityRequirements` | β | Specific security requirements to check |
| `complianceStandards` | β | Compliance standards (OWASP-Top-10, NIST-Cybersecurity-Framework, ISO-27001, SOC-2, GDPR, HIPAA, PCI-DSS) |
| `language` | β | Programming language of the code |
| `riskTolerance` | β | Risk tolerance level (low, medium, high) |
| `analysisScope` | β | Security areas to focus on (input-validation, authentication, authorization, etc.) |
| `outputFormat` | β | Output format (detailed, checklist, annotated-code) |
**Security Focus Areas:**
- π Vulnerability analysis with OWASP Top 10 coverage
- π‘οΈ Security hardening recommendations
- π Compliance checking against industry standards
- β οΈ Threat modeling and risk assessment
- π§ͺ Penetration testing guidance
**Compliance Standards:** OWASP Top 10, NIST Cybersecurity Framework, ISO 27001, SOC 2, GDPR, HIPAA, PCI-DSS
</details>
<details>
<summary><strong>Mermaid Diagram Generator</strong> β Generate professional diagrams from text descriptions</summary>
Usage: `mermaid-diagram-generator`
Generates Mermaid diagrams with intelligent parsing of descriptions for rich, customizable visualizations.
| Parameter | Required | Description |
| ------------------ | -------- | -------------------------------------------------------------------------------------------------------------------------------- |
| `description` | β
| Description of the system or process to diagram. Be detailed and specific for better diagram generation. |
| `diagramType` | β
| Type: `flowchart`, `sequence`, `class`, `state`, `gantt`, `pie`, `er`, `journey`, `quadrant`, `git-graph`, `mindmap`, `timeline` |
| `theme` | β | Visual theme: `default`, `dark`, `forest`, `neutral` |
| `direction` | β | Flowchart direction: `TD`/`TB` (top-down), `BT` (bottom-top), `LR` (left-right), `RL` (right-left) |
| `strict` | β | If true, never emit invalid diagram; use fallback if needed (default: true) |
| `repair` | β | Attempt auto-repair on validation failure (default: true) |
| `accTitle` | β | Accessibility title (added as Mermaid comment) |
| `accDescr` | β | Accessibility description (added as Mermaid comment) |
| `customStyles` | β | Custom CSS/styling directives for advanced customization |
| `advancedFeatures` | β | Type-specific advanced features (e.g., `{autonumber: true}` for sequence diagrams) |
**Enhanced Features:**
- **Intelligent Description Parsing**: All diagram types now parse descriptions to extract relevant entities, relationships, and structures
- **New Diagram Types**:
- `er` - Entity Relationship diagrams for database schemas
- `journey` - User journey maps for UX workflows
- `quadrant` - Quadrant/priority charts for decision matrices
- `git-graph` - Git commit history visualization
- `mindmap` - Hierarchical concept maps
- `timeline` - Event timelines and roadmaps
- **Advanced Customization**: Direction control, themes, custom styles, and type-specific features
- **Smart Fallbacks**: Generates sensible default diagrams when description parsing is ambiguous
**Examples:**
```bash
# Sequence diagram with participants auto-detected from description
{
"description": "User sends login request to API. API queries Database for credentials. Database returns user data. API responds to User with token.",
"diagramType": "sequence",
"advancedFeatures": {"autonumber": true}
}
# Class diagram with relationships extracted
{
"description": "User has id and email. Order contains Product items. User places Order. Product has price and name.",
"diagramType": "class"
}
# ER diagram for database schema
{
"description": "Customer places Order. Order contains LineItem. Product is referenced in LineItem.",
"diagramType": "er"
}
# User journey map
{
"description": "Shopping Journey. Section Discovery: User finds product. User reads reviews. Section Purchase: User adds to cart. User completes checkout.",
"diagramType": "journey"
}
# Gantt chart with tasks from description
{
"description": "Project: Feature Development. Phase Planning: Research requirements. Design architecture. Phase Development: Implement backend. Create frontend. Phase Testing: QA validation.",
"diagramType": "gantt"
}
# Flowchart with custom direction
{
"description": "Receive request. Validate input. Process data. Return response.",
"diagramType": "flowchart",
"direction": "LR"
}
```
</details>
<details>
<summary><strong>Memory Context Optimizer</strong> β Optimize prompt caching and context window usage</summary>
Usage: `memory-context-optimizer`
| Parameter | Required | Description |
| ---------------- | -------- | -------------------------------------------------- |
| `contextContent` | β
| Context content to optimize |
| `maxTokens` | β | Maximum token limit |
| `cacheStrategy` | β | Strategy: `aggressive`, `conservative`, `balanced` |
</details>
<details>
<summary><strong>Sprint Timeline Calculator</strong> β Calculate optimal development cycles and sprint timelines</summary>
Usage: `sprint-timeline-calculator`
| Parameter | Required | Description |
| -------------- | -------- | --------------------------------------- |
| `tasks` | β
| List of tasks with estimates |
| `teamSize` | β
| Number of team members |
| `sprintLength` | β | Sprint length in days |
| `velocity` | β | Team velocity (story points per sprint) |
</details>
<details>
<summary><strong>Model Compatibility Checker</strong> β Recommend best AI models for specific tasks</summary>
Usage: `model-compatibility-checker`
| Parameter | Required | Description |
| ----------------- | -------- | -------------------------------------------------------- |
| `taskDescription` | β
| Description of the task |
| `requirements` | β | Specific requirements (context length, multimodal, etc.) |
| `budget` | β | Budget constraints: `low`, `medium`, `high` |
</details>
<details>
<summary><strong>Guidelines Validator</strong> β Validate development practices against established guidelines</summary>
Usage: `guidelines-validator`
| Parameter | Required | Description |
| --------------------- | -------- | ----------------------------------------------------------------------------------------------- |
| `practiceDescription` | β
| Description of the development practice |
| `category` | β
| Category: `prompting`, `code-management`, `architecture`, `visualization`, `memory`, `workflow` |
</details>
## Configuration
- Node.js 20+ required (see `engines` in `package.json`).
- Tools are exposed by the MCP server and discoverable via client schemas.
- Mermaid diagrams render client-side (Markdown preview). No server rendering.
## Versioning
- Package version: `0.7.0` (matches internal resource versions).
- Tags `vX.Y.Z` trigger CI for NPM and Docker releases.
- Pin exact versions for production stability.
### Release Setup
Use the [Release Setup Issue Form](.github/ISSUE_TEMPLATE/release-setup.yml) to streamline the release process:
- **Automated version management**: Update version numbers across the codebase
- **GitHub Copilot compatible**: Structured form enables bot automation
- **Quality gates**: Pre-release checklist ensures reliability
- **CI/CD integration**: Supports existing NPM and Docker publishing workflow
To create a new release, [open a release setup issue](https://github.com/Anselmoo/mcp-ai-agent-guidelines/issues/new?template=release-setup.yml) with the target version and release details.
## Development
Prerequisites:
- Node.js 20+
- npm 10+
Setup:
```bash
git clone https://github.com/Anselmoo/mcp-ai-agent-guidelines.git
cd mcp-ai-agent-guidelines
npm install
npm run build
npm start
```
Project structure:
```
/src - TypeScript source (tools, resources, server)
/tests - Test files and utilities
/scripts - Shell scripts and helpers
/demos - Demo scripts and generated artifacts
/.github - CI and community health files
```
Testing and quality:
```bash
npm run test:unit # Unit tests
npm run test:integration # Integration tests
npm run test:demo # Demo runner
npm run test:mcp # MCP smoke script
npm run test:coverage:unit # Unit test coverage (text-summary, lcov, html)
npm run quality # Type-check + Biome check
npm run audit # Security audit (production dependencies)
npm run audit:fix # Auto-fix vulnerabilities
npm run audit:production # Audit production dependencies only
```
### Automated Demo Regeneration π
Demo files are automatically regenerated when tools change via GitHub Actions:
- **Trigger**: Any changes to `src/tools/**/*.ts` in a pull request
- **Action**: Automatically runs `npm run test:demo` to regenerate demos
- **Result**: Updated demo files are committed to the PR automatically
**Benefits**:
- β
Documentation always stays in sync with code
- β
No manual steps to remember
- β
Reviewers can see demo changes alongside code changes
**Workflow**: [`.github/workflows/auto-regenerate-demos.yml`](./.github/workflows/auto-regenerate-demos.yml)
**Manual regeneration** (if needed):
```bash
npm run build
npm run test:demo
```
### Git Hooks with Lefthook πͺ
This project uses [Lefthook](https://github.com/evilmartians/lefthook) for fast, reliable Git hooks that enforce code quality and security standards.
**Mandatory for GitHub Copilot Agent**: All quality gates must pass before commits and pushes.
Setup (automatic via `npm install`):
```bash
npm run hooks:install # Install lefthook git hooks
npm run hooks:uninstall # Remove lefthook git hooks
npx lefthook run pre-commit # Run pre-commit checks manually
npx lefthook run pre-push # Run pre-push checks manually
```
**Pre-commit hooks** (fast, parallel execution):
- π **Security**: Gitleaks secret detection
- π¨ **Code Quality**: Biome formatting & linting
- π· **Type Safety**: TypeScript type checking
- π§Ή **Code Hygiene**: Trailing whitespace & EOF fixes
**Pre-push hooks** (comprehensive validation):
- π **Security Audit**: Dependency vulnerability scanning (moderate+ level)
- π§ͺ **Testing**: Full test suite (unit, integration, demo, MCP)
- β‘ **Quality**: Type checking + Biome validation
**Why Lefthook?**
- β‘ **Fast**: Written in Go, parallel execution
- π **Reliable**: Better error handling than pre-commit
- π€ **CI Integration**: Mandatory quality gates for GitHub Copilot Agent
- π **Simple**: Single YAML configuration file
Configuration: [`lefthook.yml`](./lefthook.yml)
### Coverage reporting
- CI publishes a coverage summary in the jobβs Summary and uploads `coverage/` as an artifact.
- Coverage is also uploaded to Codecov on Node 22 runs; see the badge above for status.
## Docker
```bash
# Run with Docker
docker run -p 3000:3000 ghcr.io/anselmoo/mcp-ai-agent-guidelines:latest
# Build locally
docker build -t mcp-ai-agent-guidelines .
docker run -p 3000:3000 mcp-ai-agent-guidelines
```
VS Code + Docker settings:
```json
{
"mcp": {
"servers": {
"mcp-ai-agent-guidelines": {
"command": "docker",
"args": [
"run",
"--rm",
"-i",
"ghcr.io/anselmoo/mcp-ai-agent-guidelines:latest"
]
}
}
}
}
```
## Security
- **Dependency Scanning**: Automated vulnerability scanning runs on every PR and push to main
- Production dependencies: fails on moderate+ vulnerabilities
- All dependencies: audited and reported (dev dependencies don't block builds)
- Local audit: `npm run audit` or `npm audit --audit-level=moderate`
- Auto-fix: `npm run audit:fix` to automatically fix vulnerabilities when possible
- Pre-push hook: automatically checks for vulnerabilities before pushing code
- **Secrets Protection**: No secrets committed; releases use provenance where supported
- **Supply Chain Security**: Docker images are signed (Cosign); artifacts signed via Sigstore
- **Vulnerability Reporting**: Report security issues via [GitHub Security tab](https://github.com/Anselmoo/mcp-ai-agent-guidelines/security) or Issues
### Remediation Steps for Maintainers
When vulnerabilities are detected:
1. **Review the vulnerability**: `npm audit` provides details about affected packages
2. **Update dependencies**: `npm run audit:fix` to apply automatic fixes
3. **Manual updates**: If auto-fix doesn't work, update package.json manually:
```bash
npm update <package-name>
# or for major version updates
npm install <package-name>@latest
```
4. **Test changes**: Run `npm run test:all` to ensure updates don't break functionality
5. **Override if needed**: For false positives or accepted risks, document in security policy
## Documentation
- MCP Specification: https://modelcontextprotocol.io/
- Tools implementation: see `src/tools/` in this repo.
- Generated examples: see `demos/` and links above.
## Disclaimer
This project references third-party tools, frameworks, APIs, and services for informational purposes. See [DISCLAIMER.md](./DISCLAIMER.md) for important information about external references, trademarks, and limitations of liability.
## Contributing
Contributions welcome! Please see [CONTRIBUTING.md](./CONTRIBUTING.md) for guidelines.
### Developer Resources
- **[Complete Documentation](./docs/README.md)** - Full documentation index
- **[Clean Code Standards](./docs/tips/CLEAN_CODE_INITIATIVE.md)** - Quality requirements and scoring
- **[Error Handling Patterns](./docs/tips/ERROR_HANDLING.md)** - Best practices for error handling
- **[Architecture Guide](./docs/tips/BRIDGE_CONNECTORS.md)** - System architecture and integration patterns
- **[Type System Organization](./docs/tips/TYPE_ORGANIZATION_EXTENSION.md)** - TypeScript conventions
### Quality Standards
- **TypeScript strict mode** - All code must pass type checking
- **100% test coverage goal** - See [Clean Code Initiative](./docs/tips/CLEAN_CODE_INITIATIVE.md)
- **Biome linting** - Code must pass `npm run quality`
- **Git hooks** - Automated checks via Lefthook (see [lefthook.yml](./lefthook.yml))
Keep changes typed, linted, and include tests when behavior changes.
## License
MIT Β© Anselmoo β see [LICENSE](./LICENSE).
## References & Acknowledgments
For a comprehensive list of references, research papers, and detailed attribution, see **[docs/tips/REFERENCES.md](./docs/tips/REFERENCES.md)**.
### Key Acknowledgments
---
- **Model Context Protocol team** for the specification
- **Anthropic** for prompt caching research
- **Mermaid community** for diagram tooling
- **[@ruvnet/claude-flow](https://github.com/ruvnet/claude-flow)** - Inspired flow-based prompting features
- **[@oraios/serena](https://github.com/oraios/serena)** - Influenced semantic analysis and mode switching
- **All open-source contributors** whose work has shaped this project
See [docs/tips/REFERENCES.md](./docs/tips/REFERENCES.md) for the complete list of research papers, projects, and inspirations.
<!-- FOOTER:START -->

<!-- FOOTER:END -->